Self-Supervised Learning Driven Cross-Domain Feature Fusion Network for Hyperspectral Image Classification

Loading...
Thumbnail Image

Authors

Fang, Q.
Zhao, Y.
Wang, J.
Zhang, L.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Radioengineering Society

ORCID

Altmetrics

Abstract

Hyperspectral image (HSI) classification faces significant challenges due to the high cost of acquiring labeled samples. To mitigate this, we propose SSCF-Net, a novel self-supervised learning driven cross-domain feature fusion Network. SSCF-Net uniquely leverages readily available labeled natural images (source domain) to aid HSI (target domain) classification by transfer learning. Specifically, we employ rotation-based self-supervision in the source domain to learn transferable features, which are then transferred to the HSI domain. Within SSCF-Net, we effectively fuse local and global features: local features are extracted by a jointly trained module combining VGG and two-dimensional long short-term memory networks (TD-LSTM) networks, while global features capturing long-range dependencies are learned via a Transformer model. Crucially, in the HSI domain, we further employ contrastive learning as a self-supervised strategy to maximally utilize the limited labeled data. Extensive experiments on three benchmark HSI datasets (Salinas, Indian Pines, WHU-Hi-LongKou) demonstrate that SSCF-Net significantly outperforms existing methods, validating its effectiveness in addressing the label scarcity problem. The code is available at https://github.com/6pangbo/SSCF-Net.

Description

Citation

Radioengineering. 2025 vol. 34, č. 3, s. 494-508. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2025/25_03_0494_0508.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO