Distributed Bayesian target tracking with reduced communication: Likelihood consensus 2.0
dc.contributor.author | Šauša, Erik | cs |
dc.contributor.author | Rajmic, Pavel | cs |
dc.contributor.author | Hlawatsch, Franz | cs |
dc.coverage.issue | February 2024 | cs |
dc.coverage.volume | 215 | cs |
dc.date.issued | 2024-02-01 | cs |
dc.description.abstract | The likelihood consensus (LC) enables Bayesian target tracking in a decentralized sensor network with possibly nonlinear and non-Gaussian sensor characteristics. Here, we propose an evolved LC methodology—dubbed “LC 2.0”—with significantly reduced intersensor communication. LC 2.0 uses multiple refinements of the original LC including a sparsity-promoting calculation of expansion coefficients, the use of a B-spline dictionary, a distributed adaptive calculation of the relevant state-space region, and efficient binary representations. We consider the use of the proposed LC 2.0 within a distributed particle filter and within a distributed particle-based probabilistic data association filter. Our simulation results demonstrate that a reduction of intersensor communication by a factor of about 190 can be obtained without compromising the tracking performance. | en |
dc.format | text | cs |
dc.format.extent | 1-13 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | SIGNAL PROCESSING. 2024, vol. 215, issue February 2024, p. 1-13. | en |
dc.identifier.doi | 10.1016/j.sigpro.2023.109259 | cs |
dc.identifier.issn | 0165-1684 | cs |
dc.identifier.orcid | 0000-0002-8381-4442 | cs |
dc.identifier.other | 184719 | cs |
dc.identifier.researcherid | A-3467-2013 | cs |
dc.identifier.scopus | 14024654600 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/214460 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | SIGNAL PROCESSING | cs |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S016516842300333X | cs |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0165-1684/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
dc.subject | Target tracking | en |
dc.subject | Particle filter | en |
dc.subject | Likelihood consensus | en |
dc.subject | Splines | en |
dc.subject | Orthogonal matching pursuit | en |
dc.subject | OMP | en |
dc.subject | Sparsity | en |
dc.subject | PDA filter | en |
dc.title | Distributed Bayesian target tracking with reduced communication: Likelihood consensus 2.0 | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-184719 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:42:34 | en |
sync.item.modts | 2025.01.17 15:15:43 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1s2.0S016516842300333Xmain.pdf
- Size:
- 2.02 MB
- Format:
- Adobe Portable Document Format
- Description:
- 1s2.0S016516842300333Xmain.pdf