Distributed Bayesian target tracking with reduced communication: Likelihood consensus 2.0

dc.contributor.authorŠauša, Erikcs
dc.contributor.authorRajmic, Pavelcs
dc.contributor.authorHlawatsch, Franzcs
dc.coverage.issueFebruary 2024cs
dc.coverage.volume215cs
dc.date.issued2024-02-01cs
dc.description.abstractThe likelihood consensus (LC) enables Bayesian target tracking in a decentralized sensor network with possibly nonlinear and non-Gaussian sensor characteristics. Here, we propose an evolved LC methodology—dubbed “LC 2.0”—with significantly reduced intersensor communication. LC 2.0 uses multiple refinements of the original LC including a sparsity-promoting calculation of expansion coefficients, the use of a B-spline dictionary, a distributed adaptive calculation of the relevant state-space region, and efficient binary representations. We consider the use of the proposed LC 2.0 within a distributed particle filter and within a distributed particle-based probabilistic data association filter. Our simulation results demonstrate that a reduction of intersensor communication by a factor of about 190 can be obtained without compromising the tracking performance.en
dc.description.abstractThe likelihood consensus (LC) enables Bayesian target tracking in a decentralized sensor network with possibly nonlinear and non-Gaussian sensor characteristics. Here, we propose an evolved LC methodology—dubbed “LC 2.0”—with significantly reduced intersensor communication. LC 2.0 uses multiple refinements of the original LC including a sparsity-promoting calculation of expansion coefficients, the use of a B-spline dictionary, a distributed adaptive calculation of the relevant state-space region, and efficient binary representations. We consider the use of the proposed LC 2.0 within a distributed particle filter and within a distributed particle-based probabilistic data association filter. Our simulation results demonstrate that a reduction of intersensor communication by a factor of about 190 can be obtained without compromising the tracking performance.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSIGNAL PROCESSING. 2024, vol. 215, issue February 2024, p. 1-13.en
dc.identifier.doi10.1016/j.sigpro.2023.109259cs
dc.identifier.issn0165-1684cs
dc.identifier.orcid0000-0002-8381-4442cs
dc.identifier.other184719cs
dc.identifier.researcheridA-3467-2013cs
dc.identifier.scopus14024654600cs
dc.identifier.urihttp://hdl.handle.net/11012/214460
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofSIGNAL PROCESSINGcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S016516842300333Xcs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0165-1684/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectTarget trackingen
dc.subjectParticle filteren
dc.subjectLikelihood consensusen
dc.subjectSplinesen
dc.subjectOrthogonal matching pursuiten
dc.subjectOMPen
dc.subjectSparsityen
dc.subjectPDA filteren
dc.subjectTarget tracking
dc.subjectParticle filter
dc.subjectLikelihood consensus
dc.subjectSplines
dc.subjectOrthogonal matching pursuit
dc.subjectOMP
dc.subjectSparsity
dc.subjectPDA filter
dc.titleDistributed Bayesian target tracking with reduced communication: Likelihood consensus 2.0en
dc.title.alternativeDistributed Bayesian target tracking with reduced communication: Likelihood consensus 2.0en
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-184719en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:12:36en
sync.item.modts2025.10.14 10:03:58en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S016516842300333Xmain.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S016516842300333Xmain.pdf