Distributed Bayesian target tracking with reduced communication: Likelihood consensus 2.0

Loading...
Thumbnail Image

Authors

Šauša, Erik
Rajmic, Pavel
Hlawatsch, Franz

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

The likelihood consensus (LC) enables Bayesian target tracking in a decentralized sensor network with possibly nonlinear and non-Gaussian sensor characteristics. Here, we propose an evolved LC methodology—dubbed “LC 2.0”—with significantly reduced intersensor communication. LC 2.0 uses multiple refinements of the original LC including a sparsity-promoting calculation of expansion coefficients, the use of a B-spline dictionary, a distributed adaptive calculation of the relevant state-space region, and efficient binary representations. We consider the use of the proposed LC 2.0 within a distributed particle filter and within a distributed particle-based probabilistic data association filter. Our simulation results demonstrate that a reduction of intersensor communication by a factor of about 190 can be obtained without compromising the tracking performance.
The likelihood consensus (LC) enables Bayesian target tracking in a decentralized sensor network with possibly nonlinear and non-Gaussian sensor characteristics. Here, we propose an evolved LC methodology—dubbed “LC 2.0”—with significantly reduced intersensor communication. LC 2.0 uses multiple refinements of the original LC including a sparsity-promoting calculation of expansion coefficients, the use of a B-spline dictionary, a distributed adaptive calculation of the relevant state-space region, and efficient binary representations. We consider the use of the proposed LC 2.0 within a distributed particle filter and within a distributed particle-based probabilistic data association filter. Our simulation results demonstrate that a reduction of intersensor communication by a factor of about 190 can be obtained without compromising the tracking performance.

Description

Citation

SIGNAL PROCESSING. 2024, vol. 215, issue February 2024, p. 1-13.
https://www.sciencedirect.com/science/article/pii/S016516842300333X

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO