Zobecněná logistická zobrazení

but.committeedoc. Ing. Luděk Nechvátal, Ph.D. (předseda) prof. RNDr. Josef Šlapal, CSc. (místopředseda) doc. Ing. Petr Tomášek, Ph.D. (člen) doc. Ing. Jiří Šremr, Ph.D. (člen) prof. RNDr. Miloslav Druckmüller, CSc. (člen) Prof. Bruno Rubino, Ph.D. (člen) Prof. Corrado Lattanzio, Ph.D. (člen) Gennaro Ciampa, Ph.D. (člen)cs
but.defenceThe student presented their master’s thesis. The secretary read the supervisor’s evaluation report aloud, while the opponent was present in person and read their own review. The student responded to the opponent’s question. However, the student was unable to answer the committee’s question regarding the concept of asymptotic stability.cs
but.jazykangličtina (English)
but.programApplied and Interdisciplinary Mathematicscs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorŘehák, Pavelen
dc.contributor.authorKhan, Raeesen
dc.contributor.refereeOpluštil, Zdeněken
dc.date.created2025cs
dc.description.abstractThe logistic map is a classical model used to describe population dynamics in discrete time. A natural extension of this model is the generalized logistic map, which introduces additional flexibility through an extra exponent parameter. In this study, we focus on a particular case of the generalized logistic map known as the Richard's logistic map, which is closely related to Richard’s difference equation. To support this analysis, we begin by reviewing the foundational concepts of differential and difference equations, providing a basis for understanding the behavior of systems in both continuous and discrete time settings. We analyze the properties of these generalized logistic maps with emphasis on the special case, which simplifies to the Richard's logistic model. Through detailed algebraic manipulation, equilibrium points and their stability are investigated using derivative tests and the Schwarzian derivative. The maximum value of the growth parameter u is also computed to identify when chaotic behavior begins. The work further examines period-2 cycles and their bifurcation behavior as the growth parameter increases. Numerical simulations, cobweb plots, and bifurcation diagrams are implemented in Python to visualize transitions from stability to periodicity and chaos. The analysis reveals that for the Richard's case studied, the map becomes chaotic when u exceeds approximately 2.59, which is notably lower than the simple logistic case. Lastly, comparisons with the classical logistic map demonstrate that increasing the nonlinearity accelerates convergence to equilibrium and narrows the range of u that results in bounded behavior. These findings underline how small changes in model structure can significantly affect long-term dynamics, contributing to a deeper understanding of discrete chaos in nonlinear systems.en
dc.description.abstractThe logistic map is a classical model used to describe population dynamics in discrete time. A natural extension of this model is the generalized logistic map, which introduces additional flexibility through an extra exponent parameter. In this study, we focus on a particular case of the generalized logistic map known as the Richard's logistic map, which is closely related to Richard’s difference equation. To support this analysis, we begin by reviewing the foundational concepts of differential and difference equations, providing a basis for understanding the behavior of systems in both continuous and discrete time settings. We analyze the properties of these generalized logistic maps with emphasis on the special case, which simplifies to the Richard's logistic model. Through detailed algebraic manipulation, equilibrium points and their stability are investigated using derivative tests and the Schwarzian derivative. The maximum value of the growth parameter u is also computed to identify when chaotic behavior begins. The work further examines period-2 cycles and their bifurcation behavior as the growth parameter increases. Numerical simulations, cobweb plots, and bifurcation diagrams are implemented in Python to visualize transitions from stability to periodicity and chaos. The analysis reveals that for the Richard's case studied, the map becomes chaotic when u exceeds approximately 2.59, which is notably lower than the simple logistic case. Lastly, comparisons with the classical logistic map demonstrate that increasing the nonlinearity accelerates convergence to equilibrium and narrows the range of u that results in bounded behavior. These findings underline how small changes in model structure can significantly affect long-term dynamics, contributing to a deeper understanding of discrete chaos in nonlinear systems.cs
dc.description.markDcs
dc.identifier.citationKHAN, R. Zobecněná logistická zobrazení [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2025.cs
dc.identifier.other165711cs
dc.identifier.urihttp://hdl.handle.net/11012/253547
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectLogistic differential equationen
dc.subjectlogistic difference equationen
dc.subjectRichard's logistic mapen
dc.subjectiteration of functionsen
dc.subjectequilibrium pointen
dc.subjectstabilityen
dc.subjectk-periodic cyclesen
dc.subjectSchwarzian derivativeen
dc.subjectbifurcationen
dc.subjectcobweb diagramen
dc.subjectperiod doublingen
dc.subjectLyapunov exponenten
dc.subjectchaosen
dc.subjectFeigenbaum constant.en
dc.subjectLogistic differential equationcs
dc.subjectlogistic difference equationcs
dc.subjectRichard's logistic mapcs
dc.subjectiteration of functionscs
dc.subjectequilibrium pointcs
dc.subjectstabilitycs
dc.subjectk-periodic cyclescs
dc.subjectSchwarzian derivativecs
dc.subjectbifurcationcs
dc.subjectcobweb diagramcs
dc.subjectperiod doublingcs
dc.subjectLyapunov exponentcs
dc.subjectchaoscs
dc.subjectFeigenbaum constant.cs
dc.titleZobecněná logistická zobrazeníen
dc.title.alternativeGeneralized logistic mapscs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2025-06-17cs
dcterms.modified2025-06-20-12:24:34cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid165711en
sync.item.dbtypeZPen
sync.item.insts2025.08.27 02:57:55en
sync.item.modts2025.08.26 20:23:32en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.levelInženýrskýcs
thesis.nameIng.cs

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
3.51 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.zip
Size:
259.87 KB
Format:
Unknown data format
Description:
file appendix-1.zip
Loading...
Thumbnail Image
Name:
review_165711.html
Size:
12.96 KB
Format:
Hypertext Markup Language
Description:
file review_165711.html

Collections