Design of bimetallic 3D-printed electrocatalysts via galvanic replacement to enhance energy conversion systems
dc.contributor.author | Muoz Martin, Jose Maria | cs |
dc.contributor.author | Iffelsberger, Christian | cs |
dc.contributor.author | Redondo Negrete, Edurne | cs |
dc.contributor.author | Pumera, Martin | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 316 | cs |
dc.date.issued | 2022-11-05 | cs |
dc.description.abstract | 3D-printing (also known as additive manufacturing) has recently emerged as an appealing technology to fight against the mainstream use of carbon-based fossil fuels by the large-scale, decentralized, and sustainable manufacturing of 3D-printed electrodes for energy conversion devices. Although promising strides have been made in this area, the tunability and implementation of cost-effective metal-based 3D-printed electrodes is a challenge. Herein, a straightforward method is reported to produce bimetallic 3D-printed electrodes with built-in noble metal catalysts via galvanic replacement. For this goal, a commercially available copper/polylactic acid composite filament has been exploited for the fabrication of Cu-based 3D-printed electrodes (3D-Cu) using fused filament fabrication (FFF) technology. The subsequent electroless deposition of an active noble metal catalyst (viz. Pd) onto the 3D-Cu surface has been carried out via galvanic exchange. A detailed electrochemical study run by scanning electrochemical microscopy (SECM) has revealed that the resulting bimetallic 3D-PdCu electrode exhibits enhanced capabilities by energy conversion related reactions -hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR)- when compared with the monometallic 3D-Cu counterpart. Thus, this simple functionalization approach provides a custom way for manufacturing functional metal-based 3D-printed electronics harboring noble metal catalysts to improve energy-converting applications on-demand and beyond. | en |
dc.format | text | cs |
dc.format.extent | 1-9 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Applied Catalysis B: Environmental. 2022, vol. 316, issue 1, p. 1-9. | en |
dc.identifier.doi | 10.1016/j.apcatb.2022.121609 | cs |
dc.identifier.issn | 1873-3883 | cs |
dc.identifier.orcid | 0000-0001-9529-6980 | cs |
dc.identifier.orcid | 0000-0003-4217-0043 | cs |
dc.identifier.orcid | 0000-0003-1696-3787 | cs |
dc.identifier.orcid | 0000-0001-5846-2951 | cs |
dc.identifier.other | 178673 | cs |
dc.identifier.researcherid | E-8664-2019 | cs |
dc.identifier.researcherid | W-3612-2019 | cs |
dc.identifier.researcherid | F-2724-2010 | cs |
dc.identifier.scopus | 56377080700 | cs |
dc.identifier.scopus | 56117570300 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/208478 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | Applied Catalysis B: Environmental | cs |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0926337322005501 | cs |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1873-3883/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
dc.subject | Cu | en |
dc.subject | PLA | en |
dc.subject | 3D-printed electrodes | en |
dc.subject | Hydrogen evolution reaction | en |
dc.subject | Oxygen reduction reaction | en |
dc.subject | Scanning electrochemical microscopy | en |
dc.title | Design of bimetallic 3D-printed electrocatalysts via galvanic replacement to enhance energy conversion systems | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | acceptedVersion | en |
sync.item.dbid | VAV-178673 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:50:32 | en |
sync.item.modts | 2025.01.17 18:35:13 | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovace | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- j.apcatb.2022.121609_accepted.pdf
- Size:
- 1.18 MB
- Format:
- Adobe Portable Document Format
- Description:
- file j.apcatb.2022.121609_accepted.pdf