Design of bimetallic 3D-printed electrocatalysts via galvanic replacement to enhance energy conversion systems

dc.contributor.authorMuoz Martin, Jose Mariacs
dc.contributor.authorIffelsberger, Christiancs
dc.contributor.authorRedondo Negrete, Edurnecs
dc.contributor.authorPumera, Martincs
dc.coverage.issue1cs
dc.coverage.volume316cs
dc.date.accessioned2022-10-12T14:53:51Z
dc.date.available2022-10-12T14:53:51Z
dc.date.issued2022-11-05cs
dc.description.abstract3D-printing (also known as additive manufacturing) has recently emerged as an appealing technology to fight against the mainstream use of carbon-based fossil fuels by the large-scale, decentralized, and sustainable manufacturing of 3D-printed electrodes for energy conversion devices. Although promising strides have been made in this area, the tunability and implementation of cost-effective metal-based 3D-printed electrodes is a challenge. Herein, a straightforward method is reported to produce bimetallic 3D-printed electrodes with built-in noble metal catalysts via galvanic replacement. For this goal, a commercially available copper/polylactic acid composite filament has been exploited for the fabrication of Cu-based 3D-printed electrodes (3D-Cu) using fused filament fabrication (FFF) technology. The subsequent electroless deposition of an active noble metal catalyst (viz. Pd) onto the 3D-Cu surface has been carried out via galvanic exchange. A detailed electrochemical study run by scanning electrochemical microscopy (SECM) has revealed that the resulting bimetallic 3D-PdCu electrode exhibits enhanced capabilities by energy conversion related reactions -hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR)- when compared with the monometallic 3D-Cu counterpart. Thus, this simple functionalization approach provides a custom way for manufacturing functional metal-based 3D-printed electronics harboring noble metal catalysts to improve energy-converting applications on-demand and beyond.en
dc.description.embargo2024-11-05cs
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationApplied Catalysis B: Environmental. 2022, vol. 316, issue 1, p. 1-9.en
dc.identifier.doi10.1016/j.apcatb.2022.121609cs
dc.identifier.issn1873-3883cs
dc.identifier.orcid0000-0001-9529-6980cs
dc.identifier.orcid0000-0003-4217-0043cs
dc.identifier.orcid0000-0003-1696-3787cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other178673cs
dc.identifier.researcheridE-8664-2019cs
dc.identifier.researcheridW-3612-2019cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.scopus56377080700cs
dc.identifier.scopus56117570300cs
dc.identifier.urihttp://hdl.handle.net/11012/208478
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofApplied Catalysis B: Environmentalcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0926337322005501cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessembargoedAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1873-3883/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectCuen
dc.subjectPLAen
dc.subject3D-printed electrodesen
dc.subjectHydrogen evolution reactionen
dc.subjectOxygen reduction reactionen
dc.subjectScanning electrochemical microscopyen
dc.titleDesign of bimetallic 3D-printed electrocatalysts via galvanic replacement to enhance energy conversion systemsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-178673en
sync.item.dbtypeVAVen
sync.item.insts2023.11.05 05:03:01en
sync.item.modts2023.11.05 04:17:30en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files