Design of bimetallic 3D-printed electrocatalysts via galvanic replacement to enhance energy conversion systems
Loading...
Date
2022-11-05
Authors
Muoz Martin, Jose Maria
Iffelsberger, Christian
Redondo Negrete, Edurne
Pumera, Martin
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Altmetrics
Abstract
3D-printing (also known as additive manufacturing) has recently emerged as an appealing technology to fight against the mainstream use of carbon-based fossil fuels by the large-scale, decentralized, and sustainable manufacturing of 3D-printed electrodes for energy conversion devices. Although promising strides have been made in this area, the tunability and implementation of cost-effective metal-based 3D-printed electrodes is a challenge. Herein, a straightforward method is reported to produce bimetallic 3D-printed electrodes with built-in noble metal catalysts via galvanic replacement. For this goal, a commercially available copper/polylactic acid composite filament has been exploited for the fabrication of Cu-based 3D-printed electrodes (3D-Cu) using fused filament fabrication (FFF) technology. The subsequent electroless deposition of an active noble metal catalyst (viz. Pd) onto the 3D-Cu surface has been carried out via galvanic exchange. A detailed electrochemical study run by scanning electrochemical microscopy (SECM) has revealed that the resulting bimetallic 3D-PdCu electrode exhibits enhanced capabilities by energy conversion related reactions -hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR)- when compared with the monometallic 3D-Cu counterpart. Thus, this simple functionalization approach provides a custom way for manufacturing functional metal-based 3D-printed electronics harboring noble metal catalysts to improve energy-converting applications on-demand and beyond.
Description
Citation
Applied Catalysis B: Environmental. 2022, vol. 316, issue 1, p. 1-9.
https://www.sciencedirect.com/science/article/pii/S0926337322005501
https://www.sciencedirect.com/science/article/pii/S0926337322005501
Document type
Peer-reviewed
Document version
Accepted version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/