Comprehensive Dataset for Event Classification Using Distributed Acoustic Sensing (DAS) Systems

dc.contributor.authorTomašov, Adriáncs
dc.contributor.authorZáviška, Pavelcs
dc.contributor.authorDejdar, Petrcs
dc.contributor.authorKlíčník, Ondřejcs
dc.contributor.authorHorváth, Tomášcs
dc.contributor.authorMünster, Petrcs
dc.coverage.issue1cs
dc.coverage.volume12cs
dc.date.issued2025-05-14cs
dc.description.abstractDistributed Acoustic Sensing (DAS) technology leverages optical fibers to detect acoustic signals over long distances, offering high-resolution data critical for applications such as seismic monitoring, structural health monitoring, and security. A significant challenge in DAS systems is the accurate classification of detected events, which is crucial for their reliability. Traditional signal processing methods often struggle with the high-dimensional, noisy data produced by DAS systems, making advanced machine learning techniques essential for improved event classification. However, the lack of large, high-quality datasets has hindered progress. In this study, we present a comprehensive labeled dataset of DAS measurements collected around a university campus, featuring events such as walking, running, and vehicular movement, as well as potential security threats. This dataset provides a valuable resource for developing and validating machine learning models, enabling more accurate and automated event classification. The quality of the dataset is demonstrated through the successful training of a Convolutional Neural Network (CNN).en
dc.description.abstractDistributed Acoustic Sensing (DAS) technology leverages optical fibers to detect acoustic signals over long distances, offering high-resolution data critical for applications such as seismic monitoring, structural health monitoring, and security. A significant challenge in DAS systems is the accurate classification of detected events, which is crucial for their reliability. Traditional signal processing methods often struggle with the high-dimensional, noisy data produced by DAS systems, making advanced machine learning techniques essential for improved event classification. However, the lack of large, high-quality datasets has hindered progress. In this study, we present a comprehensive labeled dataset of DAS measurements collected around a university campus, featuring events such as walking, running, and vehicular movement, as well as potential security threats. This dataset provides a valuable resource for developing and validating machine learning models, enabling more accurate and automated event classification. The quality of the dataset is demonstrated through the successful training of a Convolutional Neural Network (CNN).en
dc.formattextcs
dc.format.extent1-8cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationScientific Data. 2025, vol. 12, issue 1, p. 1-8.en
dc.identifier.doi10.1038/s41597-025-05088-4cs
dc.identifier.issn2052-4463cs
dc.identifier.orcid0000-0003-1759-3482cs
dc.identifier.orcid0000-0003-2221-2058cs
dc.identifier.orcid0000-0002-5008-1481cs
dc.identifier.orcid0000-0001-5903-7877cs
dc.identifier.orcid0000-0001-8659-8645cs
dc.identifier.orcid0000-0002-4651-8353cs
dc.identifier.other197921cs
dc.identifier.researcheridAID-4031-2022cs
dc.identifier.researcheridAAA-4134-2019cs
dc.identifier.researcheridS-1700-2018cs
dc.identifier.researcheridJPA-4544-2023cs
dc.identifier.scopus57218878297cs
dc.identifier.scopus57202503471cs
dc.identifier.scopus57210594652cs
dc.identifier.scopus57426123400cs
dc.identifier.urihttp://hdl.handle.net/11012/251323
dc.language.isoencs
dc.publisherNature Portfoliocs
dc.relation.ispartofScientific Datacs
dc.relation.urihttps://www.nature.com/articles/s41597-025-05088-4cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2052-4463/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectDistributed Acoustic Sensing (DAS)en
dc.subjectFiber optic sensoren
dc.subjectPerimeter securityen
dc.subjectevent classificationen
dc.subjectphase-OTDRen
dc.subjectDistributed Acoustic Sensing (DAS)
dc.subjectFiber optic sensor
dc.subjectPerimeter security
dc.subjectevent classification
dc.subjectphase-OTDR
dc.titleComprehensive Dataset for Event Classification Using Distributed Acoustic Sensing (DAS) Systemsen
dc.title.alternativeComprehensive Dataset for Event Classification Using Distributed Acoustic Sensing (DAS) Systemsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MV0/VK/VK01030121cs
sync.item.dbidVAV-197921en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:12:49en
sync.item.modts2025.10.14 10:54:07en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41597025050884.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
file s41597025050884.pdf