Friction buffer stop design
Loading...
Date
Authors
Guziur, Petr
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Czech Technical University in Prague
ORCID
Altmetrics
Abstract
Friction buffer stops are the favoured construction of buffer stop, mainly due to its high resistance and variety of layout. Last but not least is its manner of deceleration induced upon impact and during the braking what makes it smart solution in railway transport safety. The general approach of designing buffer stops is via usage of the kinetic energy and its conversion into work. Paper describes input parameters such as train velocity or buffer stop vicinity which is expressed by the safety coefficient implanted within the calculation. Furthermore, the paper shows the principle of calculation the friction buffer stop work, or to be more precise, the work of its braking jaws and optionally the work of additional braking jaws located behind the buffer stop. Last section of the paper is focused on the examples of designing friction buffer stops, points out the main complications and shows the charts of relation amongst braking distance, kinetic energy and braking force and the charts of relation between deceleration rate and braking distance.
Friction buffer stops are the favoured construction of buffer stop, mainly due to its high resistance and variety of layout. Last but not least is its manner of deceleration induced upon impact and during the braking what makes it smart solution in railway transport safety. The general approach of designing buffer stops is via usage of the kinetic energy and its conversion into work. Paper describes input parameters such as train velocity or buffer stop vicinity which is expressed by the safety coefficient implanted within the calculation. Furthermore, the paper shows the principle of calculation the friction buffer stop work, or to be more precise, the work of its braking jaws and optionally the work of additional braking jaws located behind the buffer stop. Last section of the paper is focused on the examples of designing friction buffer stops, points out the main complications and shows the charts of relation amongst braking distance, kinetic energy and braking force and the charts of relation between deceleration rate and braking distance.
Friction buffer stops are the favoured construction of buffer stop, mainly due to its high resistance and variety of layout. Last but not least is its manner of deceleration induced upon impact and during the braking what makes it smart solution in railway transport safety. The general approach of designing buffer stops is via usage of the kinetic energy and its conversion into work. Paper describes input parameters such as train velocity or buffer stop vicinity which is expressed by the safety coefficient implanted within the calculation. Furthermore, the paper shows the principle of calculation the friction buffer stop work, or to be more precise, the work of its braking jaws and optionally the work of additional braking jaws located behind the buffer stop. Last section of the paper is focused on the examples of designing friction buffer stops, points out the main complications and shows the charts of relation amongst braking distance, kinetic energy and braking force and the charts of relation between deceleration rate and braking distance.
Description
Keywords
Citation
Acta Polytechnica CTU Proceedings. 2017, vol. 11, issue 1, p. 12-15.
https://ojs.cvut.cz/ojs/index.php/APP/article/view/4441
https://ojs.cvut.cz/ojs/index.php/APP/article/view/4441
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

