Train Type Identification at S&C
dc.contributor.author | Floriánová, Martina | cs |
dc.contributor.author | Podroužek, Jan | cs |
dc.contributor.author | Apeltauer, Jiří | cs |
dc.contributor.author | Vukušič, Ivan | cs |
dc.contributor.author | Plášek, Otto | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 2020 | cs |
dc.date.issued | 2020-11-24 | cs |
dc.description.abstract | The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed. | en |
dc.format | text | cs |
dc.format.extent | 1-12 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | JOURNAL OF ADVANCED TRANSPORTATION. 2020, vol. 2020, issue 1, p. 1-12. | en |
dc.identifier.doi | 10.1155/2020/8849734 | cs |
dc.identifier.issn | 0197-6729 | cs |
dc.identifier.orcid | 0000-0002-8001-6349 | cs |
dc.identifier.orcid | 0000-0003-0493-5922 | cs |
dc.identifier.orcid | 0000-0002-9791-4655 | cs |
dc.identifier.orcid | 0000-0002-6713-7146 | cs |
dc.identifier.orcid | 0000-0003-2799-1521 | cs |
dc.identifier.other | 168010 | cs |
dc.identifier.researcherid | P-9965-2015 | cs |
dc.identifier.scopus | 25121877100 | cs |
dc.identifier.scopus | 56566688300 | cs |
dc.identifier.scopus | 56301300500 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/196331 | |
dc.language.iso | en | cs |
dc.publisher | Hindawi | cs |
dc.relation.ispartof | JOURNAL OF ADVANCED TRANSPORTATION | cs |
dc.relation.uri | https://www.hindawi.com/journals/jat/2020/8849734/ | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0197-6729/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | SVM | en |
dc.subject | Train type Identification | en |
dc.subject | Railway Switches and Crossings | en |
dc.subject | Accelerometer Data | en |
dc.title | Train Type Identification at S&C | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-168010 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:44:13 | en |
sync.item.modts | 2025.01.17 15:17:46 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav železničních konstrukcí a staveb | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav automatizace inženýrských úloh a informatiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 8849734.pdf
- Size:
- 4.95 MB
- Format:
- Adobe Portable Document Format
- Description:
- 8849734.pdf