Bayesian Knowledge Transfer for a Kalman Fixed-Lag Interval Smoother

dc.contributor.authorSkalský, Ondřejcs
dc.contributor.authorDokoupil, Jakubcs
dc.coverage.issue1cs
dc.coverage.volume9cs
dc.date.accessioned2026-02-09T09:54:04Z
dc.date.issued2025-06-16cs
dc.description.abstractA Bayesian knowledge transfer mechanism that leverages external information to improve the performance of the Kalman fixed-lag interval smoother (FLIS) is proposed. Exact knowledge of the external observation model is assumed to be missing, which hinders the direct application of Bayes' rule in traditional transfer learning approaches. This limitation is overcome by the fully probabilistic design, conditioning the targeted task of state estimation on external information. To mitigate the negative impact of inaccurate external data while leveraging precise information, a latent variable is introduced. Favorably, in contrast to a filter, FLIS retrospectively refines past decisions up to a fixed time horizon, reducing the accumulation of estimation error and consequently improving the performance of state inference. Simulations indicate that the proposed algorithm better exploits precise external knowledge compared to a similar technique and achieves comparable results when the information is imprecise.en
dc.description.abstractA Bayesian knowledge transfer mechanism that leverages external information to improve the performance of the Kalman fixed-lag interval smoother (FLIS) is proposed. Exact knowledge of the external observation model is assumed to be missing, which hinders the direct application of Bayes' rule in traditional transfer learning approaches. This limitation is overcome by the fully probabilistic design, conditioning the targeted task of state estimation on external information. To mitigate the negative impact of inaccurate external data while leveraging precise information, a latent variable is introduced. Favorably, in contrast to a filter, FLIS retrospectively refines past decisions up to a fixed time horizon, reducing the accumulation of estimation error and consequently improving the performance of state inference. Simulations indicate that the proposed algorithm better exploits precise external knowledge compared to a similar technique and achieves comparable results when the information is imprecise.en
dc.formattextcs
dc.format.extent2037-2042cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Control Systems Letters. 2025, vol. 9, issue 1, p. 2037-2042.en
dc.identifier.doi10.1109/LCSYS.2025.3580047cs
dc.identifier.issn2475-1456cs
dc.identifier.orcid0009-0009-6290-3938cs
dc.identifier.orcid0000-0001-7505-8571cs
dc.identifier.other199372cs
dc.identifier.researcheridNYH-7496-2025cs
dc.identifier.researcheridA-7125-2013cs
dc.identifier.scopus55807219000cs
dc.identifier.urihttps://hdl.handle.net/11012/256248
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofIEEE Control Systems Letterscs
dc.relation.urihttps://ieeexplore.ieee.org/document/11036741cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2475-1456/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectBayesian knowledge transferen
dc.subjectfixed-lag interval smoothingen
dc.subjectstate estimationen
dc.subjectfully probabilistic designen
dc.subjectBayesian knowledge transfer
dc.subjectfixed-lag interval smoothing
dc.subjectstate estimation
dc.subjectfully probabilistic design
dc.titleBayesian Knowledge Transfer for a Kalman Fixed-Lag Interval Smootheren
dc.title.alternativeBayesian Knowledge Transfer for a Kalman Fixed-Lag Interval Smootheren
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-199372en
sync.item.dbtypeVAVen
sync.item.insts2026.02.09 10:54:04en
sync.item.modts2026.02.09 10:32:54en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí technikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotikacs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bayesian_Knowledge_Transfer_for_a_Kalman_FixedLag_Interval_Smoother.pdf
Size:
545.14 KB
Format:
Adobe Portable Document Format
Description:
file Bayesian_Knowledge_Transfer_for_a_Kalman_FixedLag_Interval_Smoother.pdf