Bayesian Knowledge Transfer for a Kalman Fixed-Lag Interval Smoother
| dc.contributor.author | Skalský, Ondřej | cs |
| dc.contributor.author | Dokoupil, Jakub | cs |
| dc.coverage.issue | 1 | cs |
| dc.coverage.volume | 9 | cs |
| dc.date.accessioned | 2026-02-09T09:54:04Z | |
| dc.date.issued | 2025-06-16 | cs |
| dc.description.abstract | A Bayesian knowledge transfer mechanism that leverages external information to improve the performance of the Kalman fixed-lag interval smoother (FLIS) is proposed. Exact knowledge of the external observation model is assumed to be missing, which hinders the direct application of Bayes' rule in traditional transfer learning approaches. This limitation is overcome by the fully probabilistic design, conditioning the targeted task of state estimation on external information. To mitigate the negative impact of inaccurate external data while leveraging precise information, a latent variable is introduced. Favorably, in contrast to a filter, FLIS retrospectively refines past decisions up to a fixed time horizon, reducing the accumulation of estimation error and consequently improving the performance of state inference. Simulations indicate that the proposed algorithm better exploits precise external knowledge compared to a similar technique and achieves comparable results when the information is imprecise. | en |
| dc.description.abstract | A Bayesian knowledge transfer mechanism that leverages external information to improve the performance of the Kalman fixed-lag interval smoother (FLIS) is proposed. Exact knowledge of the external observation model is assumed to be missing, which hinders the direct application of Bayes' rule in traditional transfer learning approaches. This limitation is overcome by the fully probabilistic design, conditioning the targeted task of state estimation on external information. To mitigate the negative impact of inaccurate external data while leveraging precise information, a latent variable is introduced. Favorably, in contrast to a filter, FLIS retrospectively refines past decisions up to a fixed time horizon, reducing the accumulation of estimation error and consequently improving the performance of state inference. Simulations indicate that the proposed algorithm better exploits precise external knowledge compared to a similar technique and achieves comparable results when the information is imprecise. | en |
| dc.format | text | cs |
| dc.format.extent | 2037-2042 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | IEEE Control Systems Letters. 2025, vol. 9, issue 1, p. 2037-2042. | en |
| dc.identifier.doi | 10.1109/LCSYS.2025.3580047 | cs |
| dc.identifier.issn | 2475-1456 | cs |
| dc.identifier.orcid | 0009-0009-6290-3938 | cs |
| dc.identifier.orcid | 0000-0001-7505-8571 | cs |
| dc.identifier.other | 199372 | cs |
| dc.identifier.researcherid | NYH-7496-2025 | cs |
| dc.identifier.researcherid | A-7125-2013 | cs |
| dc.identifier.scopus | 55807219000 | cs |
| dc.identifier.uri | https://hdl.handle.net/11012/256248 | |
| dc.language.iso | en | cs |
| dc.publisher | IEEE | cs |
| dc.relation.ispartof | IEEE Control Systems Letters | cs |
| dc.relation.uri | https://ieeexplore.ieee.org/document/11036741 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2475-1456/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | Bayesian knowledge transfer | en |
| dc.subject | fixed-lag interval smoothing | en |
| dc.subject | state estimation | en |
| dc.subject | fully probabilistic design | en |
| dc.subject | Bayesian knowledge transfer | |
| dc.subject | fixed-lag interval smoothing | |
| dc.subject | state estimation | |
| dc.subject | fully probabilistic design | |
| dc.title | Bayesian Knowledge Transfer for a Kalman Fixed-Lag Interval Smoother | en |
| dc.title.alternative | Bayesian Knowledge Transfer for a Kalman Fixed-Lag Interval Smoother | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-199372 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2026.02.09 10:54:04 | en |
| sync.item.modts | 2026.02.09 10:32:54 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí techniky | cs |
| thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotika | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bayesian_Knowledge_Transfer_for_a_Kalman_FixedLag_Interval_Smoother.pdf
- Size:
- 545.14 KB
- Format:
- Adobe Portable Document Format
- Description:
- file Bayesian_Knowledge_Transfer_for_a_Kalman_FixedLag_Interval_Smoother.pdf
