Bayesian Knowledge Transfer for a Kalman Fixed-Lag Interval Smoother

Abstract

A Bayesian knowledge transfer mechanism that leverages external information to improve the performance of the Kalman fixed-lag interval smoother (FLIS) is proposed. Exact knowledge of the external observation model is assumed to be missing, which hinders the direct application of Bayes' rule in traditional transfer learning approaches. This limitation is overcome by the fully probabilistic design, conditioning the targeted task of state estimation on external information. To mitigate the negative impact of inaccurate external data while leveraging precise information, a latent variable is introduced. Favorably, in contrast to a filter, FLIS retrospectively refines past decisions up to a fixed time horizon, reducing the accumulation of estimation error and consequently improving the performance of state inference. Simulations indicate that the proposed algorithm better exploits precise external knowledge compared to a similar technique and achieves comparable results when the information is imprecise.
A Bayesian knowledge transfer mechanism that leverages external information to improve the performance of the Kalman fixed-lag interval smoother (FLIS) is proposed. Exact knowledge of the external observation model is assumed to be missing, which hinders the direct application of Bayes' rule in traditional transfer learning approaches. This limitation is overcome by the fully probabilistic design, conditioning the targeted task of state estimation on external information. To mitigate the negative impact of inaccurate external data while leveraging precise information, a latent variable is introduced. Favorably, in contrast to a filter, FLIS retrospectively refines past decisions up to a fixed time horizon, reducing the accumulation of estimation error and consequently improving the performance of state inference. Simulations indicate that the proposed algorithm better exploits precise external knowledge compared to a similar technique and achieves comparable results when the information is imprecise.

Description

Citation

IEEE Control Systems Letters. 2025, vol. 9, issue 1, p. 2037-2042.
https://ieeexplore.ieee.org/document/11036741

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO