Optimal control of combined heat and power station operation

dc.contributor.authorKůdela, Jakubcs
dc.contributor.authorSuja, Jergušcs
dc.contributor.authorŠomplák, Radovancs
dc.contributor.authorPluskal, Jaroslavcs
dc.contributor.authorHrabec, Dušancs
dc.coverage.issue1cs
dc.coverage.volume1cs
dc.date.accessioned2024-02-26T15:46:01Z
dc.date.available2024-02-26T15:46:01Z
dc.date.issued2023-09-13cs
dc.description.abstractCombined heat and power stations have become one of the most utilized units of district heating systems. These stations usually contain several boilers for burning fossil fuels and renewable resources used for heating up steam, which can be used either for residential and commercial heating or electricity generation. To ensure efficiency, a boiler should either run continuously (for at least a given period) on a power output higher than a given threshold or switch off. The optimal control of the plant operations should combine an efficient setup for the turbine and boilers in operation, reflecting the demand for steam and the price of electricity, and a schedule that describes which boilers should be in operation at a given time. This paper proposes a method for optimal control of combined heat and power station operation for a given time horizon. The method is based on a two-level approach. The lower-level models correspond to finding the optimal setup of the combined heat and power station parameters for an hourly demand for different kinds of steam. The upper-level model corresponds to the optimal schedule of the operations of the individual boilers, which is planned for the entire time horizon. The lower-level model is modeled as a mixed-integer linear programming problem and is solved using parametric programming. A dynamic programming algorithm solves the upper-level model with a rolling horizon. The validity of the proposed method and its computational complexity for different granularity of the time horizon, different ranges of the parameters, varying demand for various kinds of steam, and varying electricity prices are investigated in a case study. The presented approach can be readily applied to other control problems with a similar structure.en
dc.formattextcs
dc.format.extent1-25cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationOPTIMIZATION AND ENGINEERING. 2023, vol. 1, issue 1, p. 1-25.en
dc.identifier.doi10.1007/s11081-023-09848-2cs
dc.identifier.issn1389-4420cs
dc.identifier.orcid0000-0002-4372-2105cs
dc.identifier.orcid0000-0002-5714-4537cs
dc.identifier.orcid0000-0002-2658-7490cs
dc.identifier.other185216cs
dc.identifier.researcheridP-7327-2018cs
dc.identifier.researcheridQ-9462-2017cs
dc.identifier.scopus56769626500cs
dc.identifier.scopus55515602000cs
dc.identifier.scopus57212244833cs
dc.identifier.urihttps://hdl.handle.net/11012/245225
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofOPTIMIZATION AND ENGINEERINGcs
dc.relation.urihttps://link.springer.com/article/10.1007/s11081-023-09848-2cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1389-4420/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCombined heat and power stationen
dc.subjectDynamic programmingen
dc.subjectOptimal controlen
dc.subjectParametric programmingen
dc.subjectRolling horizon controlen
dc.titleOptimal control of combined heat and power station operationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-185216en
sync.item.dbtypeVAVen
sync.item.insts2024.02.26 16:46:01en
sync.item.modts2024.02.26 16:14:06en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automatizace a informatikycs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav procesního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.grantorVysoké učení technické v Brně. . Fakulta aplikované informatikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11081023098482.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
file s11081023098482.pdf