Merania družicovej misie GRAIL a senzoru LOLA riešia otázku konvergencie/divergencie analytického pokračovania vonkajších rozvojov do radu sférických harmonických funkcií
but.event.date | 02.02.2023 | cs |
but.event.title | Družicové metody v geodézii a katastru | cs |
dc.contributor.author | Šprlák, Michal | |
dc.contributor.author | Han, Shin-Chan | |
dc.contributor.author | Pitoňák, Martin | |
dc.contributor.author | Novák, Pavel | |
dc.date.accessioned | 2023-09-29T13:50:00Z | |
dc.date.available | 2023-09-29T13:50:00Z | |
dc.date.issued | 2023-02-02 | cs |
dc.description.abstract | Rozvoje do radu sférických harmonických funkcií sa rutinne používajú pri reprezentácií gravitačného potenciálu a jeho priestorových derivácií v globálnych geodetických, geofyzikálnych a planetárnych aplikáciách. Oblasťou konvergencie tzv. vonkajších rozvojov do radu sférických harmonických funkcií je priestor mimo minimálnej Brillouinovej sféry (najmenšia sféra obsahujúca všetky hmoty planetárneho telesa). Napriek tomu sa vonkajšie rozvoje bežne používajú vo vnútri tejto ohraničujúcej plochy bez akýchkoľvek korekcií. Opodstatnenosť tohto postupu je v literatúre diskutovaná niekoľko desaťročí, avšak závery sú neurčité a dokonca protichodné. V tomto príspevku skúmame správanie vonkajších rozvojov do radu sférických harmonických funkcií v problematike modelovania gravitačného poľa vo vnútri minimálnej Brillouinovej sféry. Pre tento účel používame najnovšie mesačné topografické produkty LOLA (Lunar Orbiter Laser Altimeter) a merania mesačného gravitačného poľa družicovej misie GRAIL (Gravity Recovery and Interior Laboratory). V numerických experimentoch analyzujeme vybrané veličiny vypočítané z najnovších globálnych modelov gravitačného poľa odvodených z meraní družicovej misie GRAIL a veličiny vypočítané pomocou vnútorných/vonkajších rozvojov do radu sférických harmonických funkcií generované mesačnou topografiou. Porovnanie vykonávame v spektrálnej oblasti (ako amplitúdy signálu, ktoré sú funkciou sférického harmonického stupňa) a v priestorovej oblasti (ako mapy príslušných veličín). Podľa našich znalostí je družicová misia GRAIL vôbec prvý gravitačný senzor, ktorý pomohol vyriešiť dlhotrvajúci problém konvergencie/divergencie pre analytické pokračovanie vonkajších rozvojov do radu sférických harmonických funkcií, pozri [1]. | sk |
dc.description.abstract | Spherical harmonic expansions are routinely used to represent the gravitational potential and its higherorder spatial derivatives in global geodetic, geophysical, and planetary science applications. The convergence domain of external spherical harmonic expansions is the space outside the minimum Brillouin sphere (the smallest sphere containing all masses of the planetary body). Nevertheless, these expansions are commonly employed inside this bounding surface without any corrections. Justification of this procedure has been debated for several decades, but conclusions among scholars are indefinite and even contradictory. In this contribution, we examine the use of external spherical harmonic expansions for the gravitational field modelling inside the minimum Brillouin sphere. We employ the most recent lunar topographic LOLA (Lunar Orbiter Laser Altimeter) products and the measurements of the lunar gravitational field by the GRAIL (Gravity Recovery and Interior Laboratory) satellite mission. We analyse selected 39 http://dx.doi.org/10.13164/seminargnss.2023.38 quantities calculated from the most recent GRAIL-derived gravitational field models and forwardmodelled (topography-inferred) quantities synthesised by internal/external spherical harmonic expansions. The comparison is performed in the spectral domain (in terms of degree variances depending on the spherical harmonic degree) and in the spatial domain (in terms of spatial maps). To our knowledge, GRAIL is the first gravitational sensor ever, which helped to resolve the long-lasting convergence/divergence problem for the analytical downward continuation of the external spherical harmonic expansions, see [1]. | en |
dc.format | text | cs |
dc.format.extent | 38-39 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Družicové metody v geodézii a katastru 2023, s. 38-39. ISBN 978-80-86433-81-3. | cs |
dc.identifier.doi | 10.13164/seminargnss.2023.38 | en |
dc.identifier.isbn | 978-80-86433-81-3 | |
dc.identifier.uri | http://hdl.handle.net/11012/214114 | |
dc.language.iso | sk | cs |
dc.publisher | Vysoké učení technické v Brně,Fakulta stavební | cs |
dc.relation.ispartof | Družicové metody v geodézii a katastru 2023 | cs |
dc.relation.uri | http://geodesy.fce.vutbr.cz/konference/gnss-seminar/ | |
dc.rights | © Vysoké učení technické v Brně,Fakulta stavební | cs |
dc.rights.access | openAccess | en |
dc.subject | Spherical harmonic synthesis | en |
dc.subject | Global gravitational field model | en |
dc.subject | Topography | en |
dc.subject | Moon | en |
dc.subject | Sférická harmonická syntéza | sk |
dc.subject | Globálny model gravitačného poľa | sk |
dc.subject | Topografia | sk |
dc.subject | Mesiac | sk |
dc.title | Merania družicovej misie GRAIL a senzoru LOLA riešia otázku konvergencie/divergencie analytického pokračovania vonkajších rozvojov do radu sférických harmonických funkcií | sk |
dc.title.alternative | GRAIL and LOLA Satellite Data Resolve the Long-Lasting Convergence/Divergence Problem for the Analytical Downward Continuation of the External Spherical Harmonic Expansions | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta stavební | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 08_Sprlak_GNSSseminary2023.pdf
- Size:
- 242.65 KB
- Format:
- Adobe Portable Document Format
- Description: