Advancing Perimeter Security: Integrating DAS and CNN for Object Classification in Fiber Vicinity

dc.contributor.authorTomašov, Adriáncs
dc.contributor.authorZáviška, Pavelcs
dc.contributor.authorDejdar, Petrcs
dc.contributor.authorKlíčník, Ondřejcs
dc.contributor.authorDa Ros, Francescocs
dc.contributor.authorHorváth, Tomášcs
dc.contributor.authorMünster, Petrcs
dc.coverage.issue1cs
dc.coverage.volume13cs
dc.date.issued2025-04-08cs
dc.description.abstractThis paper presents an advanced perimeter protection system that integrates phase-sensitive Optical Time-Domain Reflectometry ( -OTDR) with Convolutional Neural Networks (CNNs) for real-time event classification near optical fibers. The proposed approach enhances traditional security methods by providing robust monitoring in challenging environments, such as low visibility and large-scale areas. We evaluated multiple signal preprocessing techniques, including Fast Fourier Transform (FFT), Redundant Discrete Fourier Transform (RDFT), Discrete Wavelet Transform (DWT), and Mel-Frequency Cepstral Coefficients (MFCC), to optimize classification accuracy and computational efficiency. While MFCC achieved the highest accuracy (85.61%), RDFT provided the best balance between performance (85.47%) and real-time feasibility, making it the preferred method for deployment. The system successfully differentiates events such as vehicle movement, fence manipulation, and construction work, while anomaly detection capabilities further enhance security by identifying irregular activities with minimal error. These findings demonstrate the potential of integrating fiber-optic sensing with deep learning to develop scalable, real-time perimeter protection solutions for critical infrastructure, border surveillance, and urban security.en
dc.description.abstractThis paper presents an advanced perimeter protection system that integrates phase-sensitive Optical Time-Domain Reflectometry ( -OTDR) with Convolutional Neural Networks (CNNs) for real-time event classification near optical fibers. The proposed approach enhances traditional security methods by providing robust monitoring in challenging environments, such as low visibility and large-scale areas. We evaluated multiple signal preprocessing techniques, including Fast Fourier Transform (FFT), Redundant Discrete Fourier Transform (RDFT), Discrete Wavelet Transform (DWT), and Mel-Frequency Cepstral Coefficients (MFCC), to optimize classification accuracy and computational efficiency. While MFCC achieved the highest accuracy (85.61%), RDFT provided the best balance between performance (85.47%) and real-time feasibility, making it the preferred method for deployment. The system successfully differentiates events such as vehicle movement, fence manipulation, and construction work, while anomaly detection capabilities further enhance security by identifying irregular activities with minimal error. These findings demonstrate the potential of integrating fiber-optic sensing with deep learning to develop scalable, real-time perimeter protection solutions for critical infrastructure, border surveillance, and urban security.en
dc.formattextcs
dc.format.extent63600-63610cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Access. 2025, vol. 13, issue 1, p. 63600-63610.en
dc.identifier.doi10.1109/ACCESS.2025.3558594cs
dc.identifier.issn2169-3536cs
dc.identifier.orcid0000-0003-1759-3482cs
dc.identifier.orcid0000-0003-2221-2058cs
dc.identifier.orcid0000-0002-5008-1481cs
dc.identifier.orcid0000-0001-5903-7877cs
dc.identifier.orcid0000-0001-8659-8645cs
dc.identifier.orcid0000-0002-4651-8353cs
dc.identifier.other197717cs
dc.identifier.researcheridAID-4031-2022cs
dc.identifier.researcheridAAA-4134-2019cs
dc.identifier.researcheridS-1700-2018cs
dc.identifier.researcheridJPA-4544-2023cs
dc.identifier.scopus57218878297cs
dc.identifier.scopus57202503471cs
dc.identifier.scopus57210594652cs
dc.identifier.scopus57426123400cs
dc.identifier.urihttp://hdl.handle.net/11012/251063
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofIEEE Accesscs
dc.relation.urihttps://ieeexplore.ieee.org/document/10955273cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2169-3536/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectConvolutional neural networksen
dc.subjectdistributed acoustic sensingen
dc.subjectevent classificationen
dc.subjectperimeter protectionen
dc.subjectphase-sensitive optical time-domain reflectometryen
dc.subjectConvolutional neural networks
dc.subjectdistributed acoustic sensing
dc.subjectevent classification
dc.subjectperimeter protection
dc.subjectphase-sensitive optical time-domain reflectometry
dc.titleAdvancing Perimeter Security: Integrating DAS and CNN for Object Classification in Fiber Vicinityen
dc.title.alternativeAdvancing Perimeter Security: Integrating DAS and CNN for Object Classification in Fiber Vicinityen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MV0/VK/VK01030121cs
sync.item.dbidVAV-197717en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:12:49en
sync.item.modts2025.10.14 09:48:33en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Advancing_Perimeter_Security_Integrating_DAS_and_CNN_for_Object_Classification_in_Fiber_Vicinity.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
Description:
file Advancing_Perimeter_Security_Integrating_DAS_and_CNN_for_Object_Classification_in_Fiber_Vicinity.pdf