Advancing Perimeter Security: Integrating DAS and CNN for Object Classification in Fiber Vicinity
| dc.contributor.author | Tomašov, Adrián | cs |
| dc.contributor.author | Záviška, Pavel | cs |
| dc.contributor.author | Dejdar, Petr | cs |
| dc.contributor.author | Klíčník, Ondřej | cs |
| dc.contributor.author | Da Ros, Francesco | cs |
| dc.contributor.author | Horváth, Tomáš | cs |
| dc.contributor.author | Münster, Petr | cs |
| dc.coverage.issue | 1 | cs |
| dc.coverage.volume | 13 | cs |
| dc.date.issued | 2025-04-08 | cs |
| dc.description.abstract | This paper presents an advanced perimeter protection system that integrates phase-sensitive Optical Time-Domain Reflectometry ( -OTDR) with Convolutional Neural Networks (CNNs) for real-time event classification near optical fibers. The proposed approach enhances traditional security methods by providing robust monitoring in challenging environments, such as low visibility and large-scale areas. We evaluated multiple signal preprocessing techniques, including Fast Fourier Transform (FFT), Redundant Discrete Fourier Transform (RDFT), Discrete Wavelet Transform (DWT), and Mel-Frequency Cepstral Coefficients (MFCC), to optimize classification accuracy and computational efficiency. While MFCC achieved the highest accuracy (85.61%), RDFT provided the best balance between performance (85.47%) and real-time feasibility, making it the preferred method for deployment. The system successfully differentiates events such as vehicle movement, fence manipulation, and construction work, while anomaly detection capabilities further enhance security by identifying irregular activities with minimal error. These findings demonstrate the potential of integrating fiber-optic sensing with deep learning to develop scalable, real-time perimeter protection solutions for critical infrastructure, border surveillance, and urban security. | en |
| dc.description.abstract | This paper presents an advanced perimeter protection system that integrates phase-sensitive Optical Time-Domain Reflectometry ( -OTDR) with Convolutional Neural Networks (CNNs) for real-time event classification near optical fibers. The proposed approach enhances traditional security methods by providing robust monitoring in challenging environments, such as low visibility and large-scale areas. We evaluated multiple signal preprocessing techniques, including Fast Fourier Transform (FFT), Redundant Discrete Fourier Transform (RDFT), Discrete Wavelet Transform (DWT), and Mel-Frequency Cepstral Coefficients (MFCC), to optimize classification accuracy and computational efficiency. While MFCC achieved the highest accuracy (85.61%), RDFT provided the best balance between performance (85.47%) and real-time feasibility, making it the preferred method for deployment. The system successfully differentiates events such as vehicle movement, fence manipulation, and construction work, while anomaly detection capabilities further enhance security by identifying irregular activities with minimal error. These findings demonstrate the potential of integrating fiber-optic sensing with deep learning to develop scalable, real-time perimeter protection solutions for critical infrastructure, border surveillance, and urban security. | en |
| dc.format | text | cs |
| dc.format.extent | 63600-63610 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | IEEE Access. 2025, vol. 13, issue 1, p. 63600-63610. | en |
| dc.identifier.doi | 10.1109/ACCESS.2025.3558594 | cs |
| dc.identifier.issn | 2169-3536 | cs |
| dc.identifier.orcid | 0000-0003-1759-3482 | cs |
| dc.identifier.orcid | 0000-0003-2221-2058 | cs |
| dc.identifier.orcid | 0000-0002-5008-1481 | cs |
| dc.identifier.orcid | 0000-0001-5903-7877 | cs |
| dc.identifier.orcid | 0000-0001-8659-8645 | cs |
| dc.identifier.orcid | 0000-0002-4651-8353 | cs |
| dc.identifier.other | 197717 | cs |
| dc.identifier.researcherid | AID-4031-2022 | cs |
| dc.identifier.researcherid | AAA-4134-2019 | cs |
| dc.identifier.researcherid | S-1700-2018 | cs |
| dc.identifier.researcherid | JPA-4544-2023 | cs |
| dc.identifier.scopus | 57218878297 | cs |
| dc.identifier.scopus | 57202503471 | cs |
| dc.identifier.scopus | 57210594652 | cs |
| dc.identifier.scopus | 57426123400 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/251063 | |
| dc.language.iso | en | cs |
| dc.publisher | IEEE | cs |
| dc.relation.ispartof | IEEE Access | cs |
| dc.relation.uri | https://ieeexplore.ieee.org/document/10955273 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2169-3536/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | Convolutional neural networks | en |
| dc.subject | distributed acoustic sensing | en |
| dc.subject | event classification | en |
| dc.subject | perimeter protection | en |
| dc.subject | phase-sensitive optical time-domain reflectometry | en |
| dc.subject | Convolutional neural networks | |
| dc.subject | distributed acoustic sensing | |
| dc.subject | event classification | |
| dc.subject | perimeter protection | |
| dc.subject | phase-sensitive optical time-domain reflectometry | |
| dc.title | Advancing Perimeter Security: Integrating DAS and CNN for Object Classification in Fiber Vicinity | en |
| dc.title.alternative | Advancing Perimeter Security: Integrating DAS and CNN for Object Classification in Fiber Vicinity | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| eprints.grantNumber | info:eu-repo/grantAgreement/MV0/VK/VK01030121 | cs |
| sync.item.dbid | VAV-197717 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.14 14:12:49 | en |
| sync.item.modts | 2025.10.14 09:48:33 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Advancing_Perimeter_Security_Integrating_DAS_and_CNN_for_Object_Classification_in_Fiber_Vicinity.pdf
- Size:
- 2.91 MB
- Format:
- Adobe Portable Document Format
- Description:
- file Advancing_Perimeter_Security_Integrating_DAS_and_CNN_for_Object_Classification_in_Fiber_Vicinity.pdf
