Advancing Perimeter Security: Integrating DAS and CNN for Object Classification in Fiber Vicinity
Loading...
Date
Authors
Tomašov, Adrián
Záviška, Pavel
Dejdar, Petr
Klíčník, Ondřej
Da Ros, Francesco
Horváth, Tomáš
Münster, Petr
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Altmetrics
Abstract
This paper presents an advanced perimeter protection system that integrates phase-sensitive Optical Time-Domain Reflectometry ( -OTDR) with Convolutional Neural Networks (CNNs) for real-time event classification near optical fibers. The proposed approach enhances traditional security methods by providing robust monitoring in challenging environments, such as low visibility and large-scale areas. We evaluated multiple signal preprocessing techniques, including Fast Fourier Transform (FFT), Redundant Discrete Fourier Transform (RDFT), Discrete Wavelet Transform (DWT), and Mel-Frequency Cepstral Coefficients (MFCC), to optimize classification accuracy and computational efficiency. While MFCC achieved the highest accuracy (85.61%), RDFT provided the best balance between performance (85.47%) and real-time feasibility, making it the preferred method for deployment. The system successfully differentiates events such as vehicle movement, fence manipulation, and construction work, while anomaly detection capabilities further enhance security by identifying irregular activities with minimal error. These findings demonstrate the potential of integrating fiber-optic sensing with deep learning to develop scalable, real-time perimeter protection solutions for critical infrastructure, border surveillance, and urban security.
This paper presents an advanced perimeter protection system that integrates phase-sensitive Optical Time-Domain Reflectometry ( -OTDR) with Convolutional Neural Networks (CNNs) for real-time event classification near optical fibers. The proposed approach enhances traditional security methods by providing robust monitoring in challenging environments, such as low visibility and large-scale areas. We evaluated multiple signal preprocessing techniques, including Fast Fourier Transform (FFT), Redundant Discrete Fourier Transform (RDFT), Discrete Wavelet Transform (DWT), and Mel-Frequency Cepstral Coefficients (MFCC), to optimize classification accuracy and computational efficiency. While MFCC achieved the highest accuracy (85.61%), RDFT provided the best balance between performance (85.47%) and real-time feasibility, making it the preferred method for deployment. The system successfully differentiates events such as vehicle movement, fence manipulation, and construction work, while anomaly detection capabilities further enhance security by identifying irregular activities with minimal error. These findings demonstrate the potential of integrating fiber-optic sensing with deep learning to develop scalable, real-time perimeter protection solutions for critical infrastructure, border surveillance, and urban security.
This paper presents an advanced perimeter protection system that integrates phase-sensitive Optical Time-Domain Reflectometry ( -OTDR) with Convolutional Neural Networks (CNNs) for real-time event classification near optical fibers. The proposed approach enhances traditional security methods by providing robust monitoring in challenging environments, such as low visibility and large-scale areas. We evaluated multiple signal preprocessing techniques, including Fast Fourier Transform (FFT), Redundant Discrete Fourier Transform (RDFT), Discrete Wavelet Transform (DWT), and Mel-Frequency Cepstral Coefficients (MFCC), to optimize classification accuracy and computational efficiency. While MFCC achieved the highest accuracy (85.61%), RDFT provided the best balance between performance (85.47%) and real-time feasibility, making it the preferred method for deployment. The system successfully differentiates events such as vehicle movement, fence manipulation, and construction work, while anomaly detection capabilities further enhance security by identifying irregular activities with minimal error. These findings demonstrate the potential of integrating fiber-optic sensing with deep learning to develop scalable, real-time perimeter protection solutions for critical infrastructure, border surveillance, and urban security.
Description
Keywords
Convolutional neural networks , distributed acoustic sensing , event classification , perimeter protection , phase-sensitive optical time-domain reflectometry , Convolutional neural networks , distributed acoustic sensing , event classification , perimeter protection , phase-sensitive optical time-domain reflectometry
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0003-1759-3482 