Emulating Multimemristive Behavior of Silicon Nanowire-Based Biosensors by Using CMOS-Based Implementations

dc.contributor.authorBhardwaj, Kapilcs
dc.contributor.authorSemenov, Dmitriics
dc.contributor.authorĹ otner, Romancs
dc.contributor.authorChen, Junruics
dc.contributor.authorCarrara, Sandrocs
dc.contributor.authorSrivastava, Mayankcs
dc.coverage.issue6cs
dc.coverage.volume24cs
dc.date.accessioned2024-07-22T11:46:11Z
dc.date.available2024-07-22T11:46:11Z
dc.date.issued2024-03-15cs
dc.description.abstractThe research presented in this article draws inspiration from previous efforts aimed at replicating the functions of various solid-state memristors using a variety of materials. The memristor circuit emulator serves as a cost-effective tool for circuit designers, enabling them to experiment with the diverse electrical characteristics of corresponding solid-state memristors. This article specifically focuses on the circuit-based emulation of silicon nanowire (SiNW) known for its effectiveness in biosensing applications. First, a fully floating memristor emulator has been presented based on a voltage differencing current conveyor (VDCC) and an operational transconductance amplifier (OTA)-controlled resistor, along with a grounded capacitance. Furthermore, the proposed memristor emulator was realized by employing integrated cells based on the discussed technology, and the simulation/experimental results are presented and analyzed. The experiments also confirmed the nonvolatile behavior of the realized memristor. The results demonstrate that the real-time implementation of the proposed emulator can accurately generate hysteretic behavior in both incremental and decremental memristive mode. Finally, the incremental and decremental pinched hysteresis loop (PHL) responses generated by the proposed emulator have been utilized to replicate the various types of memristive responses offered by SiNW by adding a simple extension to the circuit.en
dc.formattextcs
dc.format.extent8036-8044cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE SENSORS JOURNAL. 2024, vol. 24, issue 6, p. 8036-8044.en
dc.identifier.doi10.1109/JSEN.2024.3353669cs
dc.identifier.issn1558-1748cs
dc.identifier.orcid0000-0002-2430-1815cs
dc.identifier.other188878cs
dc.identifier.researcheridG-4209-2017cs
dc.identifier.scopus21834721500cs
dc.identifier.urihttps://hdl.handle.net/11012/249340
dc.language.isoencs
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCcs
dc.relation.ispartofIEEE SENSORS JOURNALcs
dc.relation.urihttps://ieeexplore.ieee.org/document/10410212cs
dc.rights(C) IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1558-1748/cs
dc.subjectBiosensoren
dc.subjectemulatoren
dc.subjectmemristoren
dc.subjectoperational transconductance amplifier (OTA)en
dc.subjectsilicon nanowire (SiNW)en
dc.subjectvoltage differencing current conveyor (VDCC)en
dc.titleEmulating Multimemristive Behavior of Silicon Nanowire-Based Biosensors by Using CMOS-Based Implementationsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-188878en
sync.item.dbtypeVAVen
sync.item.insts2024.07.22 13:46:11en
sync.item.modts2024.07.22 13:13:10en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektronikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10410212_accepted.pdf
Size:
4.8 MB
Format:
Adobe Portable Document Format
Description:
file 10410212_accepted.pdf