Generating Code from Textual Description of Functionality
Loading...
Date
Authors
Šamánek, Jan
ORCID
Advisor
Referee
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
S pokračujícím nástupem strojového učení a stále větších modelů neuronových sítí, roste i potřeba GPU akcelerovaných zdrojů a algoritmů pro podporu těchto modelů. Vzhledem k tomu, že velké jazykové modely jsou již dnes využívány jako asistenti při programování v moderních programovacích jazycích, mohli by s tímto problémem pomoci. Pokud se tyto modely dokáží naučit i méně známá paradigmata, jako je CUDA, mohly by pomoci s vývojem a udržování těchto systémů. Tato práce zkoumá schopnosti moderních jazykových modelů pro učení se CUDA jako programovacího paradigmatu a také vytvoření nové trenovací sady, určené pro tyto účely.
As machine learning and neural network models continue to grow, there is an increasing demand for GPU-accelerated resources and algorithms to support them. Large language models have the potential to assist with this task, as they are already used as coding assistants for popular programming languages. If these models could also learn less commonly used paradigms like CUDA, they could help develop and maintain the necessary systems. This thesis aims to explore the capabilities of modern language models for learning CUDA as a programming paradigm and creating a training corpus specifically for this purpose.
As machine learning and neural network models continue to grow, there is an increasing demand for GPU-accelerated resources and algorithms to support them. Large language models have the potential to assist with this task, as they are already used as coding assistants for popular programming languages. If these models could also learn less commonly used paradigms like CUDA, they could help develop and maintain the necessary systems. This thesis aims to explore the capabilities of modern language models for learning CUDA as a programming paradigm and creating a training corpus specifically for this purpose.
Description
Citation
ŠAMÁNEK, J. Generating Code from Textual Description of Functionality [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Strojové učení
Comittee
prof. Dr. Ing. Jan Černocký (předseda)
doc. Ing. Lukáš Burget, Ph.D. (člen)
doc. RNDr. Milan Češka, Ph.D. (člen)
Ing. Michal Hradiš, Ph.D. (člen)
Ing. Jaroslav Rozman, Ph.D. (člen)
Ing. František Grézl, Ph.D. (člen)
Date of acceptance
2023-06-19
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení