Novel highly stable conductive polymer composite PEDOT:DBSA for bioelectronic applications

Loading...
Thumbnail Image

Authors

Tumová, Šárka
Malečková, Romana
Kubáč, Lubomír
Akrman, Jiří
Enev, Vojtěch
Kalina, Lukáš
Šafaříková, Eva
Pešková, Michaela
Víteček, Jan
Vala, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
Altmetrics

Abstract

In this work, a novel conductive polymer composite PEDOT:DBSA for bioelectronic applications was prepared and optimized. The novel PEDOT:DBSA composite possesses superior biocompatibility toward cell culture and electrical characteristics comparable to the widely used PEDOT:PSS. The cross-linking processes induced by the cross-linker GOPS, which was investigating in detail using Fourier transform Raman spectroscopy and XPS analysis, lead to the excellent long-term stability of PEDOT:DBSA thin films in aqueous solutions, even without treatment at high temperature. The electrical characteristics of PEDOT:DBSA thin films with respect to the level of cross-linking were studied in detail. The conductivity of thin films was significantly improved using sulfuric acid posttreatment. A model transistor devicebased on PEDOT:DBSA shows typical transistor behavior and suitable electrical properties comparable or superior to those of avaible conductive polymers in bioelectronics, such as PEDOT:PSS. Based on these properties, the newly developed material is well suitable for bioelectronic applications that require long-term contact with living organisms, such as wearable or implantable bioelectronics.
In this work, a novel conductive polymer composite PEDOT:DBSA for bioelectronic applications was prepared and optimized. The novel PEDOT:DBSA composite possesses superior biocompatibility toward cell culture and electrical characteristics comparable to the widely used PEDOT:PSS. The cross-linking processes induced by the cross-linker GOPS, which was investigating in detail using Fourier transform Raman spectroscopy and XPS analysis, lead to the excellent long-term stability of PEDOT:DBSA thin films in aqueous solutions, even without treatment at high temperature. The electrical characteristics of PEDOT:DBSA thin films with respect to the level of cross-linking were studied in detail. The conductivity of thin films was significantly improved using sulfuric acid posttreatment. A model transistor devicebased on PEDOT:DBSA shows typical transistor behavior and suitable electrical properties comparable or superior to those of avaible conductive polymers in bioelectronics, such as PEDOT:PSS. Based on these properties, the newly developed material is well suitable for bioelectronic applications that require long-term contact with living organisms, such as wearable or implantable bioelectronics.

Description

Citation

POLYMER JOURNAL. 2023, vol. 55, issue 9, p. 983-995.
https://www.nature.com/articles/s41428-023-00784-7

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO