A deep learning approach for anomaly detection in X-ray images of paintings

dc.contributor.authorMezina, Anzhelikacs
dc.contributor.authorBurget, Radimcs
dc.contributor.authorKotrlý, Marekcs
dc.coverage.issue5cs
dc.coverage.volume13cs
dc.date.issued2025-05-02cs
dc.description.abstractThe intersection of technological advancements and cultural heritage studies has intensified the exploration of historical treasures, captivating historians and enthusiasts alike. Artificial intelligence now plays a key role in forensic art investigations by uncovering hidden patterns to detect forgeries. This study focuses on anomaly detection in X-ray images of paintings using the Ghent Altarpiece for training and testing purposes. We propose a novel model combining a Discriminatively Trained Reconstruction Anomaly Embedding Model (DRAEM), a Nested U-Net, and a new dataset derived from the Altarpiece. The proposed architecture was benchmarked against several state-of-the-art deep learning techniques in anomaly detection. Our model achieved an accuracy of 0.8399 and an F1 score of 0.7869, outperforming other methods in both accuracy and computational efficiency. Results, validated by a domain expert, show strong precision and computational efficiency through semi-supervised learning.en
dc.description.abstractThe intersection of technological advancements and cultural heritage studies has intensified the exploration of historical treasures, captivating historians and enthusiasts alike. Artificial intelligence now plays a key role in forensic art investigations by uncovering hidden patterns to detect forgeries. This study focuses on anomaly detection in X-ray images of paintings using the Ghent Altarpiece for training and testing purposes. We propose a novel model combining a Discriminatively Trained Reconstruction Anomaly Embedding Model (DRAEM), a Nested U-Net, and a new dataset derived from the Altarpiece. The proposed architecture was benchmarked against several state-of-the-art deep learning techniques in anomaly detection. Our model achieved an accuracy of 0.8399 and an F1 score of 0.7869, outperforming other methods in both accuracy and computational efficiency. Results, validated by a domain expert, show strong precision and computational efficiency through semi-supervised learning.en
dc.formattextcs
dc.format.extent1-11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationHeritage Science. 2025, vol. 13, issue 5, p. 1-11.en
dc.identifier.doi10.1038/s40494-025-01724-9cs
dc.identifier.issn2050-7445cs
dc.identifier.orcid0000-0001-8965-6193cs
dc.identifier.orcid0000-0003-1849-5390cs
dc.identifier.other197805cs
dc.identifier.scopus23011250200cs
dc.identifier.urihttp://hdl.handle.net/11012/251327
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofHeritage Sciencecs
dc.relation.urihttps://www.nature.com/articles/s40494-025-01724-9cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2050-7445/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectDeep Learningen
dc.subjectAnomaly detectionen
dc.subjectX-rayen
dc.subjectPaintingsen
dc.subjectCultural heritageen
dc.subjectDeep Learning
dc.subjectAnomaly detection
dc.subjectX-ray
dc.subjectPaintings
dc.subjectCultural heritage
dc.titleA deep learning approach for anomaly detection in X-ray images of paintingsen
dc.title.alternativeA deep learning approach for anomaly detection in X-ray images of paintingsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MV0/VK/VK01010153cs
sync.item.dbidVAV-197805en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:12:50en
sync.item.modts2025.10.14 10:51:30en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s40494025017249.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Description:
file s40494025017249.pdf