Enkapsulace půdních bakterií v hydrogelových nosičích
Loading...
Date
Authors
Orišková, Sofia
ORCID
Advisor
Referee
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta chemická
Abstract
Náplňou bakalárskej práce bolo vypracovať literárnu rešerš na tému inokulácie pôdnych baktérií, zhrnutím enkapsulačných techník a nosičových systémov vhodných pre poľnohospodárske účely. Na základe týchto údajov bol navrhnutý modelový systém enkapsulácie, ktorého optimalizáciou sa zaoberá experimentálna časť tejto práce. Enkapsulácia umožňuje postupné uvoľňovanie pôdnych baktérií, chráni a stabilizuje ich, čím zaručuje dlhšiu trvanlivosť. Pre inokuláciu bola vybraná dusík fixujúca baktéria Cupriavidus necator H16, ktorá bola enkapsulovaná do alginátu, s ktorým tvorila agregátne mikrokapsule. Enkapsulácia prebiehala na základe iónovej gelácie, kedy alginát sodný reagoval so sieťovacím činidlom, chloridom vápenatým, za tvorby kapsúl. Sledoval sa vplyv rôznych faktorov na kvalitu kapsúl. Zistilo sa, že molekulárna hmotnosť alginátu výrazne ovplyvňuje úspešnosť sieťovania. Alginát s vyššou strednou molekulárnou hmotnosťou sa vyhodnotil ako vhodnejší pre daný systém. Ako najvhodnejšie disperzné prostredie sa určila destilovaná voda, poprípade tlmivý roztok TRIS-HCl, ten bol však nevhodný v prípade potreby získania suchého produktu lyofilizáciou. Ďalej sa skúmala viabilita enkapsulovaných buniek. Zistilo sa, že bunky enkapsuláciu prežili a postupne sa z kapsúl uvoľňujú. Bolo overené, že pri vhodne zvolených podmienkach a zložení systému je možné baktériu C. necator H16 enkapsulovať do alginátových nosičov. Preukázala sa aj viabilita baktérií po enkapsulácii.
The goal of this bachelor thesis was both to review existing literature regarding the topic of inoculation of soil bacteria and test a relevant encapsulation method and optimize it. The evaluation process involved the study of various encapsulation techniques that involve hydrogel carriers suitable for agronomic purposes. Encapsulation allows controlled release of soil bacteria, and protects and stabilizes it, while ensuring longer shelf life. For the practical testing, Cupriavidus necator H16 was chosen as a nitrogen fixing bacteria for the inoculation. Through an ionic gelation method, it was encapsulated into alginate carriers, forming matrix microcapsules. Sodium alginate reacts with the cross-linking agent calcium chloride to form the capsules. The impact on the quality of the product was tested through several variables. What was revealed was that molecular weight of alginate was proven to have a significant impact. Alginate with higher molecular weight was shown to be suitable for the given system. The most desirable environment was distilled water or a TRIS-HCl buffer. However, the TRIS-HCl was unsuitable in cases of retrieving a dry product by lyophilization. Eventually, the viability of encapsulated cells was examined, and it was proven that encapsulated bacteria endure the process of encapsulation in the above-mentioned environment and they were gradually released from the carrier.
The goal of this bachelor thesis was both to review existing literature regarding the topic of inoculation of soil bacteria and test a relevant encapsulation method and optimize it. The evaluation process involved the study of various encapsulation techniques that involve hydrogel carriers suitable for agronomic purposes. Encapsulation allows controlled release of soil bacteria, and protects and stabilizes it, while ensuring longer shelf life. For the practical testing, Cupriavidus necator H16 was chosen as a nitrogen fixing bacteria for the inoculation. Through an ionic gelation method, it was encapsulated into alginate carriers, forming matrix microcapsules. Sodium alginate reacts with the cross-linking agent calcium chloride to form the capsules. The impact on the quality of the product was tested through several variables. What was revealed was that molecular weight of alginate was proven to have a significant impact. Alginate with higher molecular weight was shown to be suitable for the given system. The most desirable environment was distilled water or a TRIS-HCl buffer. However, the TRIS-HCl was unsuitable in cases of retrieving a dry product by lyophilization. Eventually, the viability of encapsulated cells was examined, and it was proven that encapsulated bacteria endure the process of encapsulation in the above-mentioned environment and they were gradually released from the carrier.
Description
Citation
ORIŠKOVÁ, S. Enkapsulace půdních bakterií v hydrogelových nosičích [online]. Brno: Vysoké učení technické v Brně. Fakulta chemická. 2018.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Spotřební chemie
Comittee
prof. Ing. Martina Klučáková, Ph.D. (předseda)
prof. Ing. Michal Veselý, CSc. (místopředseda)
prof. Ing. Ladislav Omelka, DrSc. (člen)
doc. Ing. František Šoukal, Ph.D. (člen)
prof. Mgr. Martin Vala, Ph.D. (člen)
Date of acceptance
2018-06-19
Defence
Klučáková – Úspěšnost enkapsulace byla hodnocena pouze vizuálně?
Šoukal – Měřítko u obrázků?
Vala – Dají se odhadnout náklady na výrobu?
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení