Automatic test-bench for SiC power devices using LabVIEW

Loading...
Thumbnail Image

Authors

Leuchter, Jan
Pham, Ngoc Nam
Nguyen, Huy Hoang

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

SLOVAK UNIV TECHNOLOGY
Altmetrics

Abstract

This paper is devoted to the improvement existing models of electronics devices, which are used in powers electronics as switching devices, and investigate a LabVIEW-based automatic test-bench for Silicon carbide (SiC) power devices. In recent years, power electronic devices are required to be capable handle with higher voltage, leads to development of new generation of power electronic devices, such as SiC devices. However, using a simulation platform, such as Spice, to diminish the complexity of power electronic design with these new devices is hindered by the lack of precise models. The proposed test-bench enables not only measuring static characteristics of SiC power devices, but also extracting key parameters required by simulations. These extracted parameters are then employed in the existing device model, and the simulation results which are based on the model with original parameters and models with extracted parameters are compared with measured results. The comparison clearly demonstrates that parameters obtained from the proposed test-bench significantly enhance the Spice model.
This paper is devoted to the improvement existing models of electronics devices, which are used in powers electronics as switching devices, and investigate a LabVIEW-based automatic test-bench for Silicon carbide (SiC) power devices. In recent years, power electronic devices are required to be capable handle with higher voltage, leads to development of new generation of power electronic devices, such as SiC devices. However, using a simulation platform, such as Spice, to diminish the complexity of power electronic design with these new devices is hindered by the lack of precise models. The proposed test-bench enables not only measuring static characteristics of SiC power devices, but also extracting key parameters required by simulations. These extracted parameters are then employed in the existing device model, and the simulation results which are based on the model with original parameters and models with extracted parameters are compared with measured results. The comparison clearly demonstrates that parameters obtained from the proposed test-bench significantly enhance the Spice model.

Description

Citation

Journal of Electrical Engineering-Elektrotechnicky Casopis. 2024, vol. 75, issue 2, p. 77-85.
https://sciendo.com/article/10.2478/jee-2024-0011

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO