Biodegradable WE43 Mg alloy/hydroxyapatite interpenetrating phase composites with reduced hydrogen evolution

dc.contributor.authorDrotárová, Lenkacs
dc.contributor.authorSlámečka, Karelcs
dc.contributor.authorBálint, Tomášcs
dc.contributor.authorRemešová, Michaelacs
dc.contributor.authorHudák, Radovancs
dc.contributor.authorŽivčák, Jozefcs
dc.contributor.authorSchnitzer, Marekcs
dc.contributor.authorČelko, Ladislavcs
dc.contributor.authorMontufar Jimenez, Edgar Benjamincs
dc.coverage.issue12cs
dc.coverage.volume42cs
dc.date.accessioned2025-02-03T14:48:32Z
dc.date.available2025-02-03T14:48:32Z
dc.date.issued2024-12-01cs
dc.description.abstractBiodegradable magnesium implants offer a solution for bone repair without the need for implant removal. However, concerns persist regarding peri-implant gas accumulation, which has limited their widespread clinical acceptance. Consequently, there is a need to minimise the mass of magnesium to reduce the total volume of gas generated around the implants. Incorporating porosity is a direct approach to reducing the mass of the implants, but it also decreases the strength and degradation resistance. This study demonstrates that the infiltration of a calcium phosphate cement into an additively manufactured WE43 Mg alloy scaffold with 75 % porosity, followed by hydrothermal treatment, yields biodegradable magnesium/hydroxyapatite interpenetrating phase composites that generate an order of magnitude less hydrogen gas during degradation than WE43 scaffolds. The enhanced degradation resistance results from magnesium passivation, allowing osteoblast proliferation in indirect contact with composites. Additionally, the composites exhibit a compressive strength 1.8 times greater than that of the scaffolds, falling within the upper range of the compressive strength of cancellous bone. These results emphasise the potential of the new biodegradable interpenetrating phase composites for the fabrication of temporary osteosynthesis devices. Optimizing cement hardening and magnesium passivation during hydrothermal processing is crucial for achieving both high compressive strength and low degradation rate.en
dc.formattextcs
dc.format.extent519-530cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationBioactive Materials. 2024, vol. 42, issue 12, p. 519-530.en
dc.identifier.doi10.1016/j.bioactmat.2024.08.048cs
dc.identifier.issn2452-199Xcs
dc.identifier.orcid0009-0003-7028-5427cs
dc.identifier.orcid0000-0001-8847-075Xcs
dc.identifier.orcid0000-0003-1678-5618cs
dc.identifier.orcid0000-0003-0264-3483cs
dc.identifier.orcid0000-0002-8122-4000cs
dc.identifier.other189829cs
dc.identifier.researcheridJVM-9421-2024cs
dc.identifier.researcheridD-9475-2012cs
dc.identifier.researcheridAAA-8935-2021cs
dc.identifier.researcheridD-6870-2012cs
dc.identifier.researcheridF-8040-2016cs
dc.identifier.scopus16242487800cs
dc.identifier.scopus56177144000cs
dc.identifier.scopus25621022900cs
dc.identifier.scopus23397943300cs
dc.identifier.urihttps://hdl.handle.net/11012/249972
dc.language.isoencs
dc.publisherKEAI PUBLISHING LTDcs
dc.relation.ispartofBioactive Materialscs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2452199X24003876cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2452-199X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMagnesiumen
dc.subjectBiodegradable metalen
dc.subjectCalcium phosphate cementen
dc.subjectHydroxyapatiteen
dc.subjectCompositeen
dc.titleBiodegradable WE43 Mg alloy/hydroxyapatite interpenetrating phase composites with reduced hydrogen evolutionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189829en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:48:32en
sync.item.modts2025.01.17 18:32:31en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé povlakycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2452199X24003876main.pdf
Size:
11.9 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S2452199X24003876main.pdf