Research on Detection Method for Tunnel Lining Defects Based on DCAM-YOLOv5 in GPR B-Scan

dc.contributor.authorChen, D.
dc.contributor.authorXiong, S.
dc.contributor.authorGuo, L.
dc.coverage.issue3cs
dc.coverage.volume32cs
dc.date.accessioned2023-10-11T08:00:47Z
dc.date.available2023-10-11T08:00:47Z
dc.date.issued2023-09cs
dc.description.abstractThis paper presents a detection method of DCAM-YOLOv5 for ground penetrating radar (GPR) to address the difficulty of identifying complex and multi-type defects in tunnel linings. The diversity of tunnel-lining defects and the multiple reflections and scattering caused by water-bearing defects make GPR images quite complex. Although existing methods can identify the position of underground defects from B-scans, their classification accuracy is not high. The DCAM-YOLOv5 adopts YOLOv5 as the baseline model and integrates deformable convolution and convolutional block attention module (CBAM) without adding a large number of parameters to improve the adaptive learning ability for irregular geometric shapes and boundary fuzzy defects. In this study, dielectric constant models of tunnel linings are established based on the electromagnetic simulation software (GPRMAX), including rebar and various structural defects. The simulated and field GPR B-scan images show that the DCAM-YOLOv5 method has better results for detecting different types of defects than other methods, which validates the effectiveness of the proposed detection method.en
dc.formattextcs
dc.format.extent299-311cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2023 vol. 32, č. 3, s. 299-311. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2023.0299en
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/214331
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2023/23_03_0299_0311.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectGround penetrating radaren
dc.subjecttunnel-lining defectsen
dc.subjectYOLOv5en
dc.subjectdeformable convolutionen
dc.subjectCBAMen
dc.subjectGPRMAXen
dc.titleResearch on Detection Method for Tunnel Lining Defects Based on DCAM-YOLOv5 in GPR B-Scanen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
23_03_0299_0311.pdf
Size:
7.91 MB
Format:
Adobe Portable Document Format
Description:
Collections