Research on Detection Method for Tunnel Lining Defects Based on DCAM-YOLOv5 in GPR B-Scan

Loading...
Thumbnail Image

Authors

Chen, D.
Xiong, S.
Guo, L.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

This paper presents a detection method of DCAM-YOLOv5 for ground penetrating radar (GPR) to address the difficulty of identifying complex and multi-type defects in tunnel linings. The diversity of tunnel-lining defects and the multiple reflections and scattering caused by water-bearing defects make GPR images quite complex. Although existing methods can identify the position of underground defects from B-scans, their classification accuracy is not high. The DCAM-YOLOv5 adopts YOLOv5 as the baseline model and integrates deformable convolution and convolutional block attention module (CBAM) without adding a large number of parameters to improve the adaptive learning ability for irregular geometric shapes and boundary fuzzy defects. In this study, dielectric constant models of tunnel linings are established based on the electromagnetic simulation software (GPRMAX), including rebar and various structural defects. The simulated and field GPR B-scan images show that the DCAM-YOLOv5 method has better results for detecting different types of defects than other methods, which validates the effectiveness of the proposed detection method.

Description

Citation

Radioengineering. 2023 vol. 32, č. 3, s. 299-311. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2023/23_03_0299_0311.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO