Effect of steel fibres dosage in alkali-activated slag mortars on acoustic emission obtained during three-point bending tests

Loading...
Thumbnail Image

Authors

Topolář, Libor
Šimonová, Hana
Schmid, Pavel
Rovnaník, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

EDP Sciences – Web of Conferences
Altmetrics

Abstract

The acoustic emission phenomenon is directly associated with nucleation of cracks in structural materials during loading. This paper analyses acoustic emission signals captured during three-point bending fracture tests of alkali-activated slag mortar specimens with different amount of steel fibres. Typical parameters of acoustic emission signals were identified for different mixtures to further describe the under-the stress behaviour and failure development. The acoustic emission signals from crack growth were continuously monitored using acoustic emission sensors mounted on the specimen surface. Acoustic emission results are accompanied by selected mechanical fracture parameters determined via evaluation of load versus displacement diagrams recorded during threepoint bending tests
The acoustic emission phenomenon is directly associated with nucleation of cracks in structural materials during loading. This paper analyses acoustic emission signals captured during three-point bending fracture tests of alkali-activated slag mortar specimens with different amount of steel fibres. Typical parameters of acoustic emission signals were identified for different mixtures to further describe the under-the stress behaviour and failure development. The acoustic emission signals from crack growth were continuously monitored using acoustic emission sensors mounted on the specimen surface. Acoustic emission results are accompanied by selected mechanical fracture parameters determined via evaluation of load versus displacement diagrams recorded during threepoint bending tests

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO