Ústav konstruování


Recent Submissions

Now showing 1 - 5 of 91
  • Item
    Testing and modelling of transient adhesion phenomena in rolling-sliding contacts
    (Tsinghua University, 2023-12-15) Kvarda, Daniel; Meierhofer, Alexander; Six, Klaus
    Transient adhesion effects in rolling-sliding contacts influence all aspects of train-track interaction. This is of high importance specifically when these effects result in critically low adhesion, which poses a risk to traction and braking of railway vehicles. This study presents a model that can replicate the transient changes of the coefficient of adhesion with tested water and solid particle mix. The experimental data for the model are measured using a commercial ball-on-disc tribometer. The experimental results showed a liquid reservoir in front of the contact area that slowly reduces in size. This observation was used in the modelling approach to divide the calculation into two stages where the reservoir is present and when it disappears. The model was able to reproduce the occurrence of low adhesion region seen in experimental results with different particle concentrations.
  • Item
    Assessment of the Dynamic Range of Magnetorheological Gradient Pinch-Mode Prototype Valves
    (MDPI, 2023-12-04) Žáček, Jiří; Goldasz, Janusz; Sapinski, Bogdan; Sedlačík, Michal; Strecker, Zbyněk; Kubík, Michal
    Magnetorheological (MR) fluids have been known to react to magnetic fields of sufficient magnitudes. While in the presence of the field, the material develops a yield stress. The tunable property has made it attractive in, e.g., semi-active damper applications in the vibration control domain in particular. Within the context of a given application, MR fluids can be exploited in at least one of the fundamental operating modes (flow, shear, squeeze, or gradient pinch mode) of which the gradient pinch mode has been the least explored. Contrary to the other operating modes, the MR fluid volume in the flow channel is exposed to a non-uniform magnetic field in such a way that a Venturi-like contraction is developed in a flow channel solely by means of a solidified material in the regions near the walls rather than the mechanically driven changes in the channel’s geometry. The pinch-mode rheology of the material has made it a potential candidate for developing a new category of MR valves. By convention, a pinch-mode valve features a single flow channel with poles over which a non-uniform magnetic field is induced. In this study, the authors examine ways of extending the dynamic range of pinch-mode valves by employing a number of such arrangements (stages) in series. To accomplish this, the authors developed a prototype of a multi-stage (three-stage) valve, and then compared its performance against that of a single-stage valve across a wide range of hydraulic and magnetic stimuli. To summarize, improvements of the pinch-mode valve dynamic range are evident; however, at the same time, it is hampered by the presence of serial air gaps in the flow channel.
  • Item
    Using acoustic emission for condition monitoring of the main shaft bearings in 4-point suspension wind turbine drivetrains
    (TAYLOR & FRANCIS LTD, 2023-11-23) Mohammad, Housam; Vlašic, František; Žáček, Jiří; Maya, Baraah; Mazal, Pavel
    The continuous growth of wind power technology makes condition monitoring of wind turbine components crucially important for their operational efficiency. The main shaft bearings in wind turbines have been identified as one of the most critical components in the system, especially with the ongoing increase in rotor size and weight. This increase made the 4-point suspension drivetrain more preferable. In this study, we present a novel approach for condition monitoring of the main shaft bearings in a 2 Megawatt wind turbine with 4-point suspension drivetrain using primarily acoustic emission (AE). The focus was on the analysis of time and frequency domains of the AE signal, where the dominant frequency of each AE hit was identified and plotted back in the time domain to create the so-called dominant frequency map in specific time intervals for each bearing. A comparison between the two dominant frequency maps of the two bearings gives valuable insights into the condition of the two bearings. The distinctive nature of the dominant frequency bands in the dominant frequency maps presented promising potential for this method. The presented method is straightforward and can be automated and then integrated into a planned predictive maintenance programme for this wind turbine.
  • Item
    Assembly Error Tolerance Estimation for Large-Scale Hydrostatic Bearing Segmented Sliders under Static and Low-Speed Conditions
    (MDPI, 2023-11-15) Michalec, Michal; Foltýn, Jan; Dryml, Tomáš; Snopek, Lukáš; Javorský, Dominik; Čupr, Martin; Svoboda, Petr
    Hydrostatic bearings come with certain advantages over rolling bearings in moving large-scale structures. However, assembly errors are a serious matter on large scales. This study focuses on finding assembly error tolerances for the most common types in segmented errors of hydrostatic bearing sliders: tilt and offset. The experimental part was performed in the laboratory on a full diagnostic hydrostatic bearing testing rig. An investigation of the type of error on bearing performance was first conducted under static conditions. We identified the limiting error-to-film thickness ratio (e/h) for static offset error as 2.5 and the tilt angle as = 0.46° for the investigated case. Subsequently, two types of offset error were investigated under slow-speed conditions at 38 mm/s. The limiting error for the offset error considering the relative bi-directional movement of the slider and the pad was determined as e/h < 1. The results further indicate that the error tolerance would further decrease with increasing speed. The experimental results of error tolerances can be used to determine the required film thickness or vice versa.
  • Item
    Tribological Behaviour of Ti6Al4V Alloy: An Application in Small Joint Implants
    (SPRINGER/PLENUM PUBLISHERS, 2023-11-08) Odehnal, Lukáš; Ranuša, Matúš; Vrbka, Martin; Křupka, Ivan; Hartl, Martin
    The presented study deals with the analysis of the tribological behaviour of the Ti6Al4V alloy manufactured conventionally. The study aimed to verify whether the titanium alloy is suitable for use as a contact material in small joint implants, as additive manufacturing of this alloy can in the future provide certain benefits, such as individualization and simplification of the implant construction, or controlled porosity. The tested pair consisted of a pin and a glass plate lubricated with model synovial fluid. The contact area was observed with colorimetric interferometry. Alongside film thickness, friction, and wear scars were measured. From the designed experimental conditions, the titanium alloy was not able to create a sufficiently thick lubrication film to overcome its surface roughness and damage to contact surfaces occurred. Friction was comparable for all the tested configurations. The application of conventionally manufactured titanium alloy as a contact surface in small joint implants seems to not be suitable since its performance fell short when compared to conventional cobaltous alloy. Nevertheless, there are various alternative methods available, such as unconventional manufacturing, polishing, surface texturing, and coating.