Ústav fyziky

Browse

Recent Submissions

Now showing 1 - 5 of 84
  • Item
    Advances in Materials with Self-Healing Properties: A Brief Review
    (MDPI, 2024-05-20) Dallaev, Rashid
    The development of materials with self-healing capabilities has garnered considerable attention due to their potential to enhance the durability and longevity of various engineering and structural applications. In this review, we provide an overview of recent advances in materials with self-healing properties, encompassing polymers, ceramics, metals, and composites. We outline future research directions and potential applications of self-healing materials (SHMs) in diverse fields. This review aims to provide insights into the current state-of-the-art in SHM research and guide future efforts towards the development of innovative and sustainable materials with enhanced self-repair capabilities. Each material type showcases unique self-repair mechanisms tailored to address specific challenges. Furthermore, this review investigates crack healing processes, shedding light on the latest developments in this critical aspect of self-healing materials. Through an extensive exploration of these topics, this review aims to provide a comprehensive understanding of the current landscape and future directions in self-healing materials research.
  • Item
    Electrical properties of epoxy/graphite flakes microcomposite at the percolation threshold concentration
    (IOP Publishing Ltd, 2024-04-17) Alsoud, Ammar Awadallah Ahmad; Daradkeh, Samer; Shaheen, Adel A; Al-Hroub, Qasim Amjad; Knápek, Alexandr; Mousa, Marwan; Sobola, Dinara
    The electrical properties and activation energy of epoxy/graphite flakes (GFs) micro-composite with different content of GFs (0.0625-1 wt%) were studied for electrical properties using Novocontrol Alpha Analyser (10-2 Hz-107 Hz). GFs sizes ranged from (100 nm to 10 mu m). The analysis was performed by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), visible spectrum reflectance spectra (VIS) spectra, and Fourier Transform Infrared spectra (FTIR) spectroscopy. Increasing GFs content caused multiple changes in electrical characteristics. At 0.0625 wt%, all electrical properties noticeably increased. But at 0.125 to 0.25 wt%, immobilized nanolayers were formed leading to decreased permittivity, dielectric loss (tan(delta)), quality factor (Q-factor), capacitance, conductivity, and figure of merit (F-factor). At 0.25 wt%, the epoxy microcomposite had lower permittivity, tan(delta), conductivity, and capacitance compared with unfilled epoxy. With 0.5 wt% of GFs, signified the percolation threshold, initiating a rise in permittivity, conductivity, capacitance, and tan(delta), accompanied by the closer proximity of grain boundaries, facilitating the formation of conductive channels. At a concentration of 1 wt% of GFs, the establishment of continuous interfacial conductive pathways resulted in a remarkable augmentation of all dielectric properties. The Cole-Cole analysis has been employed to investigate variations in epoxy/GFs microcomposites based on concentration levels.
  • Item
    Cleaning of tungsten tips for subsequent use as cold field emitters or STM probes
    (FEI STU, 2024-01-31) Košelová, Zuzana; Horáková, Lenka; Burda, Daniel; Allaham, Mohammad Mahmoud; Knápek, Alexandr; Fohlerová, Zdenka
    This study investigates the crucial process of cleaning cold field emission electron emitters and scanning tunnel microscopy (STM) probes, particularly focusing on tungsten tips. The cleanliness of these tips is essential for maintaining optimal cathode properties, preventing impurities that can significantly affect the emission process. Various cleaning methods, including macroetching, ammonia cleaning, and hydrofluoric acid (HF) cleaning were explored and compared by scanning electron microscopy. The macroetching method, involving a mixture of hydrochloric acid, nitric acid, and hydrogen fluoride, proved to be too reactive, causing significant material removal and altering the tip's structure. Ammonia cleaning did not significantly improve or harm the samples. However, oxide islands appeared in some areas, suggesting the potential formation of ammonium tungsten oxide. HF cleaning, specifically at 20% and 50% concentrations, demonstrated effectiveness in removing tungsten oxides without damaging the tip. Pre-cleaning with water and ethanol proved beneficial for subsequent HF refinement. Results suggest that HF is the most suitable method for oxide removal but a rinse with water is essential for removing residual sodium hydroxide. To maintain optimal properties, it is crucial to apply a less reactive layer quickly or transfer the tips to a water/ethanol bath to prevent oxidation.
  • Item
    Energy gap measurements based on enhanced absorption coefficient calculation from transmittance and reflectance raw data
    (Elsevier, 2024-01-18) Allaham, Mohammad Mahmoud; Dallaev, Rashid; Burda, Daniel; Sobola, Dinara; Nebojsa, Alois; Knápek, Alexandr; Mousa, Marwan; Kolařík, Vladimír
    The absorption coefficient plays an important role in studying and characterizing semiconducting materials. It is an important parameter to study the mechanism of photons absorption within the structure of the studied material. Thus, it helps to study the several types of charge carrier transport along with the energy band structure and its defects. In literature, a formula was reported to precisely calculate the absorption coefficient from raw data of transmittance and reflectance of electromagnetic radiation. However, the reported formula has several issues limiting its validity in the literature. In this paper, we provide a more mathematically accurate form of this equation to precisely obtain the absorption coefficient from the raw data, by considering the total internal reflection at the different interfaces. Moreover, the equation is tested by simulated data and is applied to study the optical characteristics of a single-component epoxy resin from its transmittance and reflectance raw data.
  • Item
    Modeling of Magnetic Films: A Scientific Perspective
    (MDPI, 2024-03-21) Misiurev, Denis; Holcman, Vladimír
    Magnetic thin-film modeling stands as a dynamic nexus of scientific inquiry and technological advancement, poised at the vanguard of materials science exploration. Leveraging a diverse suite of computational methodologies, including Monte Carlo simulations and molecular dynamics, researchers meticulously dissect the intricate interplay governing magnetism and thin-film growth across heterogeneous substrates. Recent strides, notably in multiscale modeling and machine learning paradigms, have engendered a paradigm shift in predictive capabilities, facilitating a nuanced understanding of thin-film dynamics spanning disparate spatiotemporal regimes. This interdisciplinary synergy, complemented by avantgarde experimental modalities such as in situ microscopy, promises a tapestry of transformative advancements in magnetic materials with far-reaching implications across multifaceted domains including magnetic data storage, spintronics, and magnetic sensing technologies. The confluence of computational modeling and experimental validation heralds a new era of scientific rigor, affording unparalleled insights into the real-time dynamics of magnetic films and bolstering the fidelity of predictive models. As researchers chart an ambitiously uncharted trajectory, the burgeoning realm of magnetic thin-film modeling burgeons with promise, poised to unlock novel paradigms in materials science and engineering. Through this intricate nexus of theoretical elucidation and empirical validation, magnetic thin-film modeling heralds a future replete with innovation, catalyzing a renaissance in technological possibilities across diverse industrial landscapes.