Investigation of ammonia gas sensing properties of graphite oxide

Loading...
Thumbnail Image
Date
2016-09-04
Authors
Bannov, Alexander G.
Prášek, Jan
Jašek, Ondřej
Shibaev, Alexander A.
Zajíčková, Lenka
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Altmetrics
Abstract
In this paper a graphite oxide is investigated as a possible sensing layer of room temperature ammonia chemiresistive gas sensor. The sensing properties were tested in a wide range of ammonia concentrations in air (10-1000 ppm) and under different humidity levels (3-65 %). It was concluded that the graphite oxide based sensor possessed high response to NH3 in synthetic air (R/R0 ranged from 2.5 to 7.4 % for concentrations of 100-500 ppm and 3 % relative humidity) with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing of ambient relative humidity led to increase of sensor response. The highest response of 22.2 % for 100 ppm of ammonia was achieved at 65 % relative humidity level.
In this paper a graphite oxide is investigated as a possible sensing layer of room temperature ammonia chemiresistive gas sensor. The sensing properties were tested in a wide range of ammonia concentrations in air (10-1000 ppm) and under different humidity levels (3-65 %). It was concluded that the graphite oxide based sensor possessed high response to NH3 in synthetic air (R/R0 ranged from 2.5 to 7.4 % for concentrations of 100-500 ppm and 3 % relative humidity) with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing of ambient relative humidity led to increase of sensor response. The highest response of 22.2 % for 100 ppm of ammonia was achieved at 65 % relative humidity level.
Description
Citation
Procedia Engineering. 2016, vol. 168, issue 1, p. 231-234.
https://www.sciencedirect.com/science/article/pii/S1877705816334798
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citace PRO