Mechanochemical synthesis of mononuclear gold(I) halide complexes of diphosphine ligands with tuneable luminescent properties

Loading...
Thumbnail Image

Authors

Deák, Andréa
Jobbágy, Csaba
Demeter, Attila
Čelko, Ladislav
Cihlář, Jaroslav
Szabó, Pál T.
Ábrányi-Balogh, Péter
Crawford, Deborah E.
Virieux, David
Colacino, Evelina

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry
Altmetrics

Abstract

A mechanochemical method is reported for the synthesis of Au(diphos)X complexes of diphosphine (diphos = XantPhos and N-XantPhos) ligands and halide ions (X = Cl and I). The Au(XantPhos)X (1: X = Cl; 2: X = I) and Au(N-XantPhos)Cl (3) complexes exhibited either yellowish green (1) or bluish green (2) emission, whereas 3 was seemingly non-emissive in the solid state at room temperature. Blue- (2B) and bluish green (2G) luminescent concomitant solvates of 2 were obtained by recrystallization. Luminescent colour changes from blue (2B) or bluish green (2G) to yellow were observed when these forms were subjected to mechanical stimulus, while the original emission colour can be recovered in the presence of solvent vapours. Moreover, the luminescence of 2B can be reversibly altered between blue and yellow by heating/cooling-cycles. These results demonstrate the power of mechanochemistry in the rapid (4 min reaction time), efficient (up to 98% yield) and greener synthesis of luminescent and stimuli-responsive gold(I) complexes.
A mechanochemical method is reported for the synthesis of Au(diphos)X complexes of diphosphine (diphos = XantPhos and N-XantPhos) ligands and halide ions (X = Cl and I). The Au(XantPhos)X (1: X = Cl; 2: X = I) and Au(N-XantPhos)Cl (3) complexes exhibited either yellowish green (1) or bluish green (2) emission, whereas 3 was seemingly non-emissive in the solid state at room temperature. Blue- (2B) and bluish green (2G) luminescent concomitant solvates of 2 were obtained by recrystallization. Luminescent colour changes from blue (2B) or bluish green (2G) to yellow were observed when these forms were subjected to mechanical stimulus, while the original emission colour can be recovered in the presence of solvent vapours. Moreover, the luminescence of 2B can be reversibly altered between blue and yellow by heating/cooling-cycles. These results demonstrate the power of mechanochemistry in the rapid (4 min reaction time), efficient (up to 98% yield) and greener synthesis of luminescent and stimuli-responsive gold(I) complexes.

Description

Citation

DALTON TRANSACTIONS. 2021, vol. 50, issue 38, p. 13337-13344.
https://pubs.rsc.org/en/content/articlelanding/2021/DT/D1DT01751A

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO