2015/2
Browse
Recent Submissions
- ItemFormulating the Net Gain of MISO-SFN in the Presence of Self-Interferences(Společnost pro radioelektronické inženýrství, 2015-06) Jeon, Sungho; Kim, Junghyun; Mok, Ha-Kyun; Seo, Jong-SooIn this study, an analytical formula for multiple-input single-output single frequency network gain (MISO-SFNG) is investigated. To formulate the net MISO-SFNG, we derived the average signal to interference plus noise ratio (SINR) where the gain achieved by the distributed MISO diversity as a function of power imbalance is curve-fitted. Further, we analyzed the losses owing to self-interferences resulting from the delay spread and imperfect channel estimation. We verified the accuracy and effectiveness of the derived formula by comparing the measurement results with the analytical results. The derived formula helps to understand how various system factors affect the gain under a given condition. The formula can be used to evaluate the MISO-SFNG and to predict the MISO-SFN coverage in various system configurations.
- ItemDesign and Evaluation of Digital Baseband Converter Sub-channel Delay Compensation Method on Bandwidth Synthesis(Společnost pro radioelektronické inženýrství, 2015-06) Jiang, Kun; Yan, Pingbo; Wang, Yuanqin; Jiao, Yiwen; Lian, Xin; Xu, KeThe effect of sub-channel delay on bandwidth synthesis is investigated to eliminate the “phase step” phenomenon in bandwidth synthesis during the test of CDBE (Chinese Digital Backend). Through formula derivation, we realize that sub-channel delay may cause phase discontinuity between different sub-channels. Theoretical analysis shows that sub-channel delay can induce bandwidth synthesis error in group delay measurement of the linear system. Furthermore, in the differential delay measurement between two stations, bandwidth synthesis error may occur when the LO (Local Oscillator) frequency differences of corresponding sub-channels are not identical. Error-free conditions are discussed under different applications. The phase errors among different sub-channels can be removed manually. However, the most effective way is the compensation of sub-channel delay. A sub-channel delay calculation method based on Modelsim is proposed. The compensation method is detailed. Simulation and field experiments are presented to verify our approach.
- ItemHigh Speed Dim Air Target Detection Using Airborne Radar under Clutter and Jamming Effects(Společnost pro radioelektronické inženýrství, 2015-06) Almslmany, Amir; Cao, Qunsheng; Wang, CaiyunThe challenging potential problems associated with using airborne radar in detection of high Speed Maneuvering Dim Target (HSMDT) are the highly noise, jamming and clutter effects. The problem is not only how to remove clutter and jamming as well as the range migration and Doppler ambiguity estimation problems due to high relative speed between the targets and airborne radar. Some of the recently published works ignored the range migration problems, while the others ignored the Doppler ambiguity estimation. In this paper a new hybrid technique using Optimum Space Time Adaptive Processing (OSTAP), Second Order Keystone Transform (SOKT), and the Improved Fractional Radon Transform (IFrRT) was proposed. The OSTAP was applied as anti-jamming and clutter rejection method, the SOKT corrects the range curvature and part of the range walk, then the IFrRT estimates the target’ radial acceleration and corrects the residual range walk. The simulation demonstrates the validity and effectiveness of the proposed technique, and its advantages over the previous researches by comparing its probability of detection with the traditional methods. The new approach increases the probability of detection, and also overcomes the limitation of Doppler frequency ambiguity.
- ItemWavelet-Based Compressive Sensing for Point Scatterers(Společnost pro radioelektronické inženýrství, 2015-06) Wilsenach, Gregory; Mishra, Amit KumarCompressive Sensing (CS) allows for the sam-pling of signals at well below the Nyquist rate but does so, usually, at the cost of the suppression of lower amplitude sig-nal components. Recent work suggests that important infor-mation essential for recognizing targets in the radar context is contained in the side-lobes as well, which are often sup-pressed by CS. In this paper we extend existing techniques and introduce new techniques both for improving the accu-racy of CS reconstructions and for improving the separa-bility of scenes reconstructed using CS. We investigate the Discrete Wavelet Transform (DWT), and show how the use of the DWT as a representation basis may improve the accu-racy of reconstruction generally. Moreover, we introduce the concept of using multiple wavelet-based reconstructions of a scene, given only a single physical observation, to derive re-constructions that surpass even the best wavelet-based CS reconstructions. Lastly, we specifically consider the effect of the wavelet-based reconstruction on classification. This is done indirectly by comparing outputs of different algo-rithms using a variety of separability measures. We show that various wavelet-based CS reconstructions are substan-tially better than conventional CS approaches at inducing (or preserving) separability, and hence may be more useful in classification applications.
- ItemInfluence of Stereoscopic Camera System Alignment Error on the Accuracy of 3D Reconstruction(Společnost pro radioelektronické inženýrství, 2015-06) Bolecek, Libor; Ricny, VaclavThe article deals with the influence of inaccurate rotation of cameras in camera system alignment on 3D reconstruction accuracy. The accuracy of the all three spatial coordinates is analyzed for two alignments (setups) of 3D cameras. In the first setup, a 3D system with parallel optical axes of the cameras is analyzed. In this stereoscopic setup, the deterministic relations are derived by the trigonometry and basic stereoscopic formulas. The second alignment is a generalized setup with cameras in arbitrary positions. The analysis of the situation in the general setup is closely related with the influence of errors of the points' correspondences. Therefore the relation between errors of points' correspondences and reconstruction of the spatial position of the point was investigated. This issue is very complex. The worst case analysis was executed with the use of Monte Carlo method. The aim is to estimate a critical situation and the possible extent of these errors. Analysis of the generalized system and derived relations for normal system represent a significant improvement of the spatial coordinates accuracy analysis. A practical experiment was executed which confirmed the proposed relations.