QFCOI - Enhancing Objective Quality Assessment for Compressed Omnidirectional Images with Fusion of Measures

dc.contributor.authorŠimka, Marekcs
dc.contributor.authorPolák, Ladislavcs
dc.contributor.authorZizien, Adamcs
dc.contributor.authorFliegel, Karelcs
dc.coverage.issue8cs
dc.coverage.volume13cs
dc.date.accessioned2025-08-21T12:56:58Z
dc.date.available2025-08-21T12:56:58Z
dc.date.issued2025-08-08cs
dc.description.abstractThis paper introduces Quality Fusion of Compressed Omnidirectional Images (QFCOI), an enhanced objective quality assessment method for 360° images. QFCOI integrates linear fusion of feature metrics. Established conventional state-of-the-art measures were analyzed to select specific ones for effective fusion and to mitigate eventual overfitting. The feature metrics selection was based on statistical performance and ability to capture key aspects of image quality, including structural preservation, visual information fidelity, and artifact sensitivity. To optimize predictive performance of QFCOI, a genetic algorithm was utilized to determine optimal weight coefficients, maximizing the monotonic correlation with subjective quality scores. The QFCOI performance was validated through correlation coefficients, statistical significance testing, and Receiver Operating Characteristic (ROC) analyses. Results confirmed that QFCOI outperformed other conventional metrics, achieving the highest performance on the OMNIQAD dataset across multiple emerging compression algorithms, including High Efficiency Image File Format (HEIC), Joint Photographic Experts Group XL (JPEG XL), and AV1 Image File Format (AVIF). Further, validation on the relevant public CVIQ dataset for HEIC-compressed images confirmed the robustness of QFCOI, and the method modification on only 25 % of the data, achieved the best performance on the CVIQ dataset. These results highlight the generalization properties and versatility of QFCOI. In contrast to learning-based models, the proposed method offers a transparent and interpretable alternative while achieving high accuracy and statistical reliability in objective quality assessment.en
dc.formattextcs
dc.format.extent140223-140238cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Access. 2025, vol. 13, issue 8, p. 140223-140238.en
dc.identifier.doi10.1109/ACCESS.2025.3597214cs
dc.identifier.issn2169-3536cs
dc.identifier.orcid0000-0002-7958-834Xcs
dc.identifier.orcid0000-0001-7084-6210cs
dc.identifier.other198504cs
dc.identifier.scopus36167253100cs
dc.identifier.urihttps://hdl.handle.net/11012/255464
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofIEEE Accesscs
dc.relation.urihttps://ieeexplore.ieee.org/document/11121299cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2169-3536/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectOmnidirectional images (360°)en
dc.subjectvirtual reality contenten
dc.subjectemerging compressionsen
dc.subjectimage quality assessmenten
dc.subjectobjective qualityen
dc.titleQFCOI - Enhancing Objective Quality Assessment for Compressed Omnidirectional Images with Fusion of Measuresen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-198504en
sync.item.dbtypeVAVen
sync.item.insts2025.08.21 14:56:58en
sync.item.modts2025.08.21 14:34:17en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektronikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
14_08_official_QFCOI_Enhancing_Objective_Quality_Assessment_for_Compressed_Omnidirectional_Images_With_Fusion_of_Measures.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format
Description:
file 14_08_official_QFCOI_Enhancing_Objective_Quality_Assessment_for_Compressed_Omnidirectional_Images_With_Fusion_of_Measures.pdf