Methods for Animal Brain Mapping

Loading...
Thumbnail Image
Date
2018-09
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
Measurements of brain electrical activity in animals are essential for the validation of the pharmaco-effect of drugs. The way to evaluate these recordings should be comparable to that of EEG in humans. Methods that visualize the results of the measured EEG recording include brain mapping in two-dimensional or three-dimensional space. The most commonly used methods of interpolation techniques in humans are spherical splines and 3D splines. We measured nine brains of Wistar rats and compared them with a brain model from the atlas (Brain Atlas Reconstructor, BAR). We validated the brain model of Wistar rat for future use. We implemented a module in MATLAB 2015a for brain mapping, specifically, we implemented algorithms for spherical and 3D spline mapping. The root mean square error of the spherical spline method is 0.5943 in the case of testing signal and 0.6291/0.6388 in the case of real data estimation. The root mean square error of the 3D spline method is 0.4334 in the case of testing signal and 0.0849/0.0768 in the case of real data estimation. Our results show that the 3D spline method with the projection on sphere gives significantly better 3D potential map than spherical splines.
Description
Citation
Radioengineering. 2018 vol. 27, č. 3, s. 806-812. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2018/18_03_0806_0812.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO