Vizualizace neuronové sítě použité jako jazykový model

Loading...
Thumbnail Image

Date

Authors

Ryšánek, Jakub

Mark

D

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

LSTM sít je typ neuronové sítě, která je určena na analýzu sekvenčních dat. Výhodou LSTM oproti jednoduché rekurentní neuronové síti je schopnost ukládat dlouhodobé závis- losti, což umožňuje dosahovat vyšší úspěšnosti při provádění úloh jako je rozpoznávání řeči nebo jazykové modelování. Avšak vzhledem z jejich komplexitě není zcela jasné jak přesně fungují. Abych prozkoumal jejich vnitřní chování tak jsem vytvořil tři vizualizační metody. Tyto metody se zaměřují na vzor chování jednotlivých prvků modelu nebo na chování celého modelu při zpracování slov s podobným syntaktickým nebo sémantickým významem.
Long short-term memory (LSTM) network is a type of neural network designed to analyze sequence data. The advantage of LSTM over the simple recurrent neural network is the ability to store long-term dependencies, which allows them to reach higher accuracy when performing tasks such as speech recognition or language modeling. However, due to their complexity, the internal processes that lead to these results are still not fully understood. To explore their inner workings, I created three visualization methods. These methods focus on the pattern of the behavior of the single unit present in the model or the behavior of the whole model when processing words with similar syntactic or semantic meanings.

Description

Citation

RYŠÁNEK, J. Vizualizace neuronové sítě použité jako jazykový model [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Informační technologie

Comittee

doc. Ing. František Zbořil, Ph.D. (předseda) doc. RNDr. Dana Hliněná, Ph.D. (člen) Ing. Michal Hradiš, Ph.D. (člen) doc. Ing. Michal Bidlo, Ph.D. (člen) Ing. Vladimír Veselý, Ph.D. (člen)

Date of acceptance

2023-06-15

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm D.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO