Cell And Sub-Cellular Segmentation In Quantitative Phase Imaging Using U-Net
| but.event.date | 27.04.2021 | cs |
| but.event.title | STUDENT EEICT 2021 | cs |
| dc.contributor.author | Majerčík, Jakub | |
| dc.contributor.author | Špaček, Michal | |
| dc.date.accessioned | 2023-01-06T10:05:43Z | |
| dc.date.available | 2023-01-06T10:05:43Z | |
| dc.date.issued | 2021 | cs |
| dc.description.abstract | The ability to automatically segment images, especially microscopy images of cells, opensnew opportunities in cancer research or other practical applications. Recent advancements in deeplearning enabled for effective single-cell segmentation, however, automatic segmentation of subcellularregions is still challenging. This work describes an implementation of a U-net neural networkfor label-free segmentation of sub-cellular regions on images of adherent prostate cancer cells,specifically PC-3 and 22Rv1. Using the best performing approach, out of all that have been tested,we have managed to distinguish between objects and background with average dice coefficients of0.83, 0.78 and 0.63 for whole cells, nuclei and nucleoli respectively | en |
| dc.format | text | cs |
| dc.format.extent | 9-12 | cs |
| dc.format.mimetype | application/pdf | en |
| dc.identifier.citation | Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 9-12. ISBN 978-80-214-5943-4 | cs |
| dc.identifier.doi | 10.13164/eeict.2021.9 | |
| dc.identifier.isbn | 978-80-214-5943-4 | |
| dc.identifier.uri | http://hdl.handle.net/11012/200823 | |
| dc.language.iso | en | cs |
| dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.relation.ispartof | Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected papers | en |
| dc.relation.uri | https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni | cs |
| dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.rights.access | openAccess | en |
| dc.subject | cell segmentation | en |
| dc.subject | deep learning | en |
| dc.subject | neural network | en |
| dc.subject | quantitative phase imaging | en |
| dc.subject | nucleus,nucleolus | en |
| dc.title | Cell And Sub-Cellular Segmentation In Quantitative Phase Imaging Using U-Net | en |
| dc.type.driver | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
