Cell And Sub-Cellular Segmentation In Quantitative Phase Imaging Using U-Net
Loading...
Date
2021
Authors
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
The ability to automatically segment images, especially microscopy images of cells, opensnew opportunities in cancer research or other practical applications. Recent advancements in deeplearning enabled for effective single-cell segmentation, however, automatic segmentation of subcellularregions is still challenging. This work describes an implementation of a U-net neural networkfor label-free segmentation of sub-cellular regions on images of adherent prostate cancer cells,specifically PC-3 and 22Rv1. Using the best performing approach, out of all that have been tested,we have managed to distinguish between objects and background with average dice coefficients of0.83, 0.78 and 0.63 for whole cells, nuclei and nucleoli respectively
Description
Citation
Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 9-12. ISBN 978-80-214-5943-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií