Power Allocation and Low Complexity Detector for Differential Full Diversity Spatial Modulation Using Two Transmit Antennas

Loading...
Thumbnail Image

Authors

Dwarika, Kavishaur
Xu, Hongjun

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

Differential full diversity spatial modulation (DFD-SM) is a differential spatial modulation scheme that makes use of a cyclic unitary M-ary phase shift keying (M-PSK) constellation to achieve diversity gains at both the transmitter and receiver. In this paper, we extend the power allocation concept of generalized differential modulation (GDM) to DFD-SM to improve its block-error rate (BLER). A novel power allocation scheme is formulated, and its optimum power allocation is derived. An asymptotic upper bound is presented for the new scheme and results are verified through Monte Carlo simulations. It can be seen that for a large enough frame length, the proposed scheme can almost achieve coherent performance. We also propose a low complexity detection scheme for DFD-SM. We evaluate the computational complexity of the maximum-likelihood (ML) detector and compare it to that of the proposed algorithm. It is shown that our scheme is independent of the constellation size. Numerical simulations of the BLER are presented, and it can be seen that the proposed scheme provides near ML performance throughout the entire signal-to-noise ratio (SNR) range with a complexity reduction of about 55% and 52% for one and two receive antennas respectively, in the high SNR region.

Description

Citation

Radioengineering. 2017 vol. 26, č. 2, s. 461-469. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2017/17_02_0461_0469.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International License
Citace PRO