Metody pro analýzu dlouhodobých záznamů invazivních neurofyziologických dat

but.committeeprof. Ing. Marek Penhaker, Ph.D. (předseda) prof. Ing. Jan Kremláček, Ph.D. (člen) prof. MUDr. Jakub Otáhal, Ph.D. - opponent (člen) doc. MUDr. Martina Bočková, Ph.D. (člen) Mgr. Terezie Filipenská, Ph.D. (člen) Ing. Martin Vítek, Ph.D. (člen)cs
but.defenceDizertant stručně, jasně a srozumitelně seznámil komisi s průběhem svého výzkumu a výsledky uvedené v dizertační práci. Zodpověděl dotazy oponenta uspokojivě a pohotově reagoval na dotazy ostatních členů komise.cs
but.jazykangličtina (English)
but.programBiomedicínské technologie a bioinformatikacs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorJurák, Pavelen
dc.contributor.authorMívalt, Filipen
dc.contributor.refereeOtáhal,, Jakuben
dc.contributor.refereeVaratharajah,, Yogatheesanen
dc.date.accessioned2024-12-10T14:03:19Z
dc.date.available2024-12-10T14:03:19Z
dc.date.created2024cs
dc.description.abstractEpilepsy is one of the most common neurological disorders, affecting nearly one percent of the world population. Sleep disruption is a common comorbidity of epilepsy, negatively influencing the lives of those affected. Deep brain stimulation (DBS) is an established therapy for drug-resistant epilepsy, yet its impact on sleep is not fully understood. This dissertation introduces novel tools and algorithms developed for automated sleep analysis of long-term intracranial electroencephalography (iEEG) signals collected using implantable neural stimulating and sensing devices. A distributed brain co-processor system designed for simultaneous electrical brain stimulation and continuous iEEG sensing is introduced in the first part of this thesis. This system enables the collection of long-term iEEG data, which presents an opportunity to investigate brain neurophysiology, epilepsy, sleep, DBS, and their relationships on long-term scales. The core of the dissertation focuses on the development of automated sleep classification algorithms using iEEG recorded using an implantable neural sensing and stimulating (INSS) device implanted in humans. The proposed approach establishes an automated sleep classification strategy using a single channel of iEEG and expert sleep annotations. The results demonstrate accurate sleep classification, even under different DBS paradigms. Developed sleep classifiers were implemented into a novel Brain RISE Platform for long-term tracking of epilepsy and behavior. The Brain RISE Platform suggests that low-frequency DBS might provide a greater seizure reduction and better sleep and memory in five people with epilepsy compared to clinically approved high-frequency stimulation. The dissertation also explores the use of electrical brain impedance as a potential indicator of sleep state-dependent dynamics of the extracellular brain space. The findings suggest that electrical brain impedance may serve as a surrogate to track the glymphatic system and metabolite clearance in the human brain. In summary, this work contributes to the development of novel methods for automated analysis of long-term iEEG data, facilitating research on brain neurophysiology, epilepsy, sleep, DBS, and their interplay. The findings have implications for the development of the next-generation INSS devices, adaptive stimulation strategies, and the development of future therapies.en
dc.description.abstractEpilepsy is one of the most common neurological disorders, affecting nearly one percent of the world population. Sleep disruption is a common comorbidity of epilepsy, negatively influencing the lives of those affected. Deep brain stimulation (DBS) is an established therapy for drug-resistant epilepsy, yet its impact on sleep is not fully understood. This dissertation introduces novel tools and algorithms developed for automated sleep analysis of long-term intracranial electroencephalography (iEEG) signals collected using implantable neural stimulating and sensing devices. A distributed brain co-processor system designed for simultaneous electrical brain stimulation and continuous iEEG sensing is introduced in the first part of this thesis. This system enables the collection of long-term iEEG data, which presents an opportunity to investigate brain neurophysiology, epilepsy, sleep, DBS, and their relationships on long-term scales. The core of the dissertation focuses on the development of automated sleep classification algorithms using iEEG recorded using an implantable neural sensing and stimulating (INSS) device implanted in humans. The proposed approach establishes an automated sleep classification strategy using a single channel of iEEG and expert sleep annotations. The results demonstrate accurate sleep classification, even under different DBS paradigms. Developed sleep classifiers were implemented into a novel Brain RISE Platform for long-term tracking of epilepsy and behavior. The Brain RISE Platform suggests that low-frequency DBS might provide a greater seizure reduction and better sleep and memory in five people with epilepsy compared to clinically approved high-frequency stimulation. The dissertation also explores the use of electrical brain impedance as a potential indicator of sleep state-dependent dynamics of the extracellular brain space. The findings suggest that electrical brain impedance may serve as a surrogate to track the glymphatic system and metabolite clearance in the human brain. In summary, this work contributes to the development of novel methods for automated analysis of long-term iEEG data, facilitating research on brain neurophysiology, epilepsy, sleep, DBS, and their interplay. The findings have implications for the development of the next-generation INSS devices, adaptive stimulation strategies, and the development of future therapies.cs
dc.description.markPcs
dc.identifier.citationMÍVALT, F. Metody pro analýzu dlouhodobých záznamů invazivních neurofyziologických dat [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2024.cs
dc.identifier.other161326cs
dc.identifier.urihttps://hdl.handle.net/11012/249780
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologiícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectepilepsyen
dc.subjectdeep brain stimulationen
dc.subjectimplantable neural stimulatorsen
dc.subjectautomated sleep classi- ficationen
dc.subjectelectrical brain impedanceen
dc.subjectepilepsycs
dc.subjectdeep brain stimulationcs
dc.subjectimplantable neural stimulatorscs
dc.subjectautomated sleep classi- ficationcs
dc.subjectelectrical brain impedancecs
dc.titleMetody pro analýzu dlouhodobých záznamů invazivních neurofyziologických daten
dc.title.alternativeMethods for Analysis of Long-Term Invasive Neurophysiology Datacs
dc.typeTextcs
dc.type.driverdoctoralThesisen
dc.type.evskpdizertační prácecs
dcterms.dateAccepted2024-12-05cs
dcterms.modified2024-12-05-14:39:10cs
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs
sync.item.dbid161326en
sync.item.dbtypeZPen
sync.item.insts2024.12.10 15:03:19en
sync.item.modts2024.12.06 05:31:48en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrstvícs
thesis.levelDoktorskýcs
thesis.namePh.D.cs
Files
Original bundle
Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
15.74 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
Posudek-Vedouci prace-Posudek skolitele_Ing. Jurak_Ing. Mivalt.pdf
Size:
204 KB
Format:
Adobe Portable Document Format
Description:
file Posudek-Vedouci prace-Posudek skolitele_Ing. Jurak_Ing. Mivalt.pdf
Loading...
Thumbnail Image
Name:
Posudek-Oponent prace-Opponent Review prof. Otahal_dissertation Mivalt.pdf
Size:
274.4 KB
Format:
Adobe Portable Document Format
Description:
file Posudek-Oponent prace-Opponent Review prof. Otahal_dissertation Mivalt.pdf
Loading...
Thumbnail Image
Name:
Posudek-Oponent prace-Opponent Review of Doctoral Dissertation YV Certified 002.pdf
Size:
312.89 KB
Format:
Adobe Portable Document Format
Description:
file Posudek-Oponent prace-Opponent Review of Doctoral Dissertation YV Certified 002.pdf
Loading...
Thumbnail Image
Name:
review_161326.html
Size:
1.73 KB
Format:
Hypertext Markup Language
Description:
file review_161326.html
Collections