Optimization of Bipolar Toeplitz Measurement Matrix Based on Cosine-Exponential Chaotic Map and Improved Abolghasemi Algorithm

Loading...
Thumbnail Image
Date
2023-12
Authors
Meng, S.
Meng, C.
Wang, C.
Wang, Q.
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
In compressive sensing theory, the measurement matrix plays a crucial role in compressive observation of sparse signals. The bipolar Toeplitz measurement matrix constructed based on chaotic map has advantages such as generating fewer free elements and supporting fast algorithms, making it widely used. While optimizing the measurement matrix can effectively improve its compressive sensing reconstruction performance, existing optimization algorithms are not suitable for the bipolar Toeplitz measurement matrix due to its structural and bipolar properties. To address this issue, this paper proposes an optimization method for the bipolar Toeplitz measurement matrix based on cosine-exponential (CE) chaotic map sequences and an improved Abolghasemi algorithm. Using an enhanced CE chaotic map to generate chaotic sequences with greater chaos and randomness, we construct the measurement matrix and optimize it using the structure matrix and the improved Abolghasemi algorithm, which preserves the matrix's bipolarity without altering its structure. We also introduce constraints on the generated sequence values during the optimization process. Through simulation experiments, the effectiveness of our optimization algorithm is verified, as the optimized bipolar Toeplitz measurement matrix significantly reduces reconstruction error and improves reconstruction probability.
Description
Citation
Radioengineering. 2023 vol. 32, č. 4, s. 583-593. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2023/23_04_0583_0593.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO