Smart bactericide based on reduced graphene oxide decorated with copper and zinc nanoparticles

Loading...
Thumbnail Image

Authors

Bytešníková, Zuzana
Pečenka, Jakub
Tekielska, Dorota
Pekárková, Jana
Ridošková, Andrea
Bezdička, Petr
Kiss, Tomáš
Eichmeier, Aleš
Adam, Vojtěch
Lukas, Richtera

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
Altmetrics

Abstract

Graphene oxide (GO) synthesised by modified Tour's method was decorated with copper and zinc nanoparticles (NPs) and simultaneously reduced by sodium borohydride to obtain a nanocomposite of reduced GO with copper and zinc NPs (rGO-Cu-Zn). The nanocomposite rGO-Cu-Zn was characterised by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The rGO-Cu-Zn was tested against Xanthomonas euvesicatoria (X. euvesicatoria), which attacks tomatoes and causes bacterial spots (BSs), and compared with the commercial product Champion 50 WG. Total bacterial growth inhibition was observed for the 1% rGO-Cu-Zn, whereas Champion 50 WG at the same concentration inhibited but did not eradicate all the bacterial colonies. To evaluate the negative effect of the rGO-Cu-Zn on the molecular level, the expression of the genes associated with the action of abiotic and biotic stress factors was analysed. Gene expression in the plants treated with 10% rGO-Cu-Zn did not exhibit a noticeable increase.
Graphene oxide (GO) synthesised by modified Tour's method was decorated with copper and zinc nanoparticles (NPs) and simultaneously reduced by sodium borohydride to obtain a nanocomposite of reduced GO with copper and zinc NPs (rGO-Cu-Zn). The nanocomposite rGO-Cu-Zn was characterised by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The rGO-Cu-Zn was tested against Xanthomonas euvesicatoria (X. euvesicatoria), which attacks tomatoes and causes bacterial spots (BSs), and compared with the commercial product Champion 50 WG. Total bacterial growth inhibition was observed for the 1% rGO-Cu-Zn, whereas Champion 50 WG at the same concentration inhibited but did not eradicate all the bacterial colonies. To evaluate the negative effect of the rGO-Cu-Zn on the molecular level, the expression of the genes associated with the action of abiotic and biotic stress factors was analysed. Gene expression in the plants treated with 10% rGO-Cu-Zn did not exhibit a noticeable increase.

Description

Citation

Chemical and Biological Technologies in Agriculture. 2023, vol. 10, issue 1, p. 1-12.
https://chembioagro.springeropen.com/articles/10.1186/s40538-023-00489-2

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO