Multimodal Features for Detection of Driver Stress and Fatigue: Review
dc.contributor.author | Němcová, Andrea | cs |
dc.contributor.author | Svozilová, Veronika | cs |
dc.contributor.author | Bucsuházy, Kateřina | cs |
dc.contributor.author | Smíšek, Radovan | cs |
dc.contributor.author | Mézl, Martin | cs |
dc.contributor.author | Hesko, Branislav | cs |
dc.contributor.author | Belák, Michal | cs |
dc.contributor.author | Bilík, Martin | cs |
dc.contributor.author | Maxera, Pavel | cs |
dc.contributor.author | Seitl, Martin | cs |
dc.contributor.author | Dominik, Tomáš | cs |
dc.contributor.author | Semela, Marek | cs |
dc.contributor.author | Šucha, Matúš | cs |
dc.contributor.author | Kolář, Radim | cs |
dc.coverage.issue | 6 | cs |
dc.coverage.volume | 22 | cs |
dc.date.issued | 2021-06-01 | cs |
dc.description.abstract | Driver fatigue and stress significantly contribute to higher number of car accidents worldwide. Although, different detection approaches have been already commercialized and used by car producers (and third party companies), research activities in this field are still needed in order to increase the reliability of these alert systems. Also, in the context of automated driving, the driver mental state assessment will be an important part of cars in future. This paper presents state-of-the-art review of different approaches for driver fatigue and stress detection and evaluation. We describe in details various signals (biological, car and video) and derived features used for these tasks and we discuss their relevance and advantages. In order to make this review complete, we also describe different datasets, acquisition systems and experiment scenarios. | en |
dc.format | text | cs |
dc.format.extent | 3214-3233 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. 2021, vol. 22, issue 6, p. 3214-3233. | en |
dc.identifier.doi | 10.1109/TITS.2020.2977762 | cs |
dc.identifier.issn | 1558-0016 | cs |
dc.identifier.orcid | 0000-0003-1801-7057 | cs |
dc.identifier.orcid | 0000-0001-5184-8923 | cs |
dc.identifier.orcid | 0000-0003-1247-6148 | cs |
dc.identifier.orcid | 0000-0003-0413-3604 | cs |
dc.identifier.orcid | 0000-0002-4147-8727 | cs |
dc.identifier.orcid | 0000-0001-7126-0617 | cs |
dc.identifier.orcid | 0000-0002-6923-8725 | cs |
dc.identifier.orcid | 0000-0003-3796-4658 | cs |
dc.identifier.orcid | 0000-0001-9461-9477 | cs |
dc.identifier.orcid | 0000-0003-3716-1062 | cs |
dc.identifier.orcid | 0000-0002-0469-6397 | cs |
dc.identifier.other | 163233 | cs |
dc.identifier.researcherid | AAH-1590-2021 | cs |
dc.identifier.researcherid | AAG-5924-2019 | cs |
dc.identifier.researcherid | F-5329-2017 | cs |
dc.identifier.researcherid | A-2336-2016 | cs |
dc.identifier.researcherid | J-5251-2016 | cs |
dc.identifier.researcherid | J-5266-2016 | cs |
dc.identifier.researcherid | V-4736-2017 | cs |
dc.identifier.researcherid | J-4907-2016 | cs |
dc.identifier.researcherid | C-8547-2014 | cs |
dc.identifier.scopus | 6507784572 | cs |
dc.identifier.scopus | 57194560385 | cs |
dc.identifier.scopus | 57188873046 | cs |
dc.identifier.scopus | 36477866400 | cs |
dc.identifier.scopus | 57205166450 | cs |
dc.identifier.scopus | 56578277800 | cs |
dc.identifier.scopus | 57205167913 | cs |
dc.identifier.scopus | 56578709000 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/195664 | |
dc.language.iso | en | cs |
dc.publisher | IEEE | cs |
dc.relation.ispartof | IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS | cs |
dc.relation.uri | https://ieeexplore.ieee.org/document/9031734 | cs |
dc.rights | (C) IEEE | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1558-0016/ | cs |
dc.subject | driver fatigue | en |
dc.subject | driver stress | en |
dc.subject | traffic accident | en |
dc.subject | physiological signals | en |
dc.subject | multimodal features | en |
dc.title | Multimodal Features for Detection of Driver Stress and Fatigue: Review | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | acceptedVersion | en |
sync.item.dbid | VAV-163233 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:39:44 | en |
sync.item.modts | 2025.01.17 15:23:55 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. . Univerzita Palackého v Olomouci | cs |
thesis.grantor | Vysoké učení technické v Brně. Ústav soudního inženýrství. Odbor znalectví ve strojírenství, analýza dopravních nehod a oceňování motorových vozidel | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- multimodalfeaturesvut.pdf
- Size:
- 892.83 KB
- Format:
- Adobe Portable Document Format
- Description:
- multimodalfeaturesvut.pdf