Depersonalization of Speech Using Speaker-Specific Transform Based on Long-Term Spectrum

dc.contributor.authorRujzl, M.
dc.contributor.authorSigmund, M.
dc.coverage.issue4cs
dc.coverage.volume32cs
dc.date.accessioned2024-01-09T14:20:53Z
dc.date.available2024-01-09T14:20:53Z
dc.date.issued2023-12cs
dc.description.abstractThis paper introduces a novel approach for hiding personal information in speech signals. The proposed approach applied a transform warping function, which is obtained from a long-term linear prediction spectrum individually for each speaker. The depersonalized speech was compared with the often used technique based on vocal tract length normalization. The proposed approach performs wider manipulation of fundamental frequency and provides higher intelligibility by 5% in clean speech and by 8% for signal-to-noise ratio 5 dB. It also significantly alters the derived glottal pulses, making them difficult to use for personality analysis. Speech intelligibility index and glottal pulse distortion are new aspects in the field of voice depersonalization.en
dc.formattextcs
dc.format.extent523-530cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2023 vol. 32, č. 4, s. 523-530. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2023.0523en
dc.identifier.issn1210-2512
dc.identifier.urihttps://hdl.handle.net/11012/244212
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2023/23_04_0523_0530.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectSpeech depersonalizationen
dc.subjectlong-term spectrumen
dc.subjectvoice transformationen
dc.subjectdepersonalized speech evaluationen
dc.titleDepersonalization of Speech Using Speaker-Specific Transform Based on Long-Term Spectrumen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
23_04_0523_0530.pdf
Size:
800.38 KB
Format:
Adobe Portable Document Format
Description:
Collections