Analysis of IEC 61850-9-2LE Measured Values Using a Neural Network
dc.contributor.author | Wannous, Kinan Hasan Wafaa | cs |
dc.contributor.author | Toman, Petr | cs |
dc.contributor.author | Jurák, Viktor | cs |
dc.contributor.author | Wasserbauer, Vojtěch | cs |
dc.coverage.issue | 9 | cs |
dc.coverage.volume | 12 | cs |
dc.date.accessioned | 2020-08-04T10:59:55Z | |
dc.date.available | 2020-08-04T10:59:55Z | |
dc.date.issued | 2019-04-28 | cs |
dc.description.abstract | Process bus communication has an important role to digitalize substations. The IEC 61850-9-2 standard specifies the requirements to transmit digital data over Ethernet networks. The paper analyses the impact of IEC 61850-9-2LE on physical protections with (analog-digital) input data of voltage and current. With the increased interaction between physical devices and communication components, the test proposes a communication analysis for a substation with the conventional method (analog input) and digital method based on the IEC 61850 standard. The use of IEC 61850 as the basis for smart grids includes the use of merging units (MUs) and deployment of relays based on microprocessors. The paper analyses the merging unit’s functions for relays using IEC 61850-9-2LE. The proposed method defines the sampled measured values source and analysis of the traffic. By using neural net pattern recognition that solves the pattern recognition problem, a relation between the inputs (number of samples/ms—interval time between the packets) and the source of the data is found. The benefit of this approach is to reduce the time to test the merging unit by getting the feedback from the merging unit and using the neural network to get the data structure of the publisher IED. Tests examine the GOOSE message and performance using the IEC standard based on a network traffic perspective. | en |
dc.format | text | cs |
dc.format.extent | 841-861 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | ENERGIES. 2019, vol. 12, issue 9, p. 841-861. | en |
dc.identifier.doi | 10.3390/en12091618 | cs |
dc.identifier.issn | 1996-1073 | cs |
dc.identifier.other | 156831 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/179267 | |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | ENERGIES | cs |
dc.relation.uri | https://www.mdpi.com/1996-1073/12/9/1618 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1996-1073/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | IEC61850 | en |
dc.subject | SMV | en |
dc.subject | sampled value | en |
dc.subject | GOOSE | en |
dc.subject | Ethernet | en |
dc.subject | SVScout | en |
dc.subject | delay time | en |
dc.subject | IED | en |
dc.subject | time synchronization | en |
dc.subject | machine learning | en |
dc.subject | ROCs | en |
dc.title | Analysis of IEC 61850-9-2LE Measured Values Using a Neural Network | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-156831 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2021.02.25 12:54:35 | en |
sync.item.modts | 2021.02.25 12:14:31 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. oddělení-EEN-CVVOZE | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- energies1201618v2.pdf
- Size:
- 7.82 MB
- Format:
- Adobe Portable Document Format
- Description:
- energies1201618v2.pdf