Studium propagace spinových vln v prostředí s netriviální distribucí magnetizace

Loading...
Thumbnail Image
Date
Authors
Klíma, Jan
ORCID
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta strojního inženýrství
Abstract
Magnonika je obor fyziky zabývající se spinovými vlnami a jejich kvazičásticemi – magnony. Spinové vlny jsou jedním z kandidátů pro budoucí výpočetní technologie. Obvody a součástky využívající vlastnosti spinových vln mají potenciál doplnit či nahradit ty současné, založené na CMOS technologiích, které již dosáhly svého fyzikálního limitu. Pro zpracování informací pomocí spinových vln je zapotřebí umět spinové vlny efektivně navádět v magnonických obvodech, zejména v různě zahnutých vlnovodech propojujících jednotlivé prvky obvodů. Kvůli anizotropnímu chování spinových vln není tato problematika zcela triviální a dosud nebyla dostatečně prozkoumána. V této práci jsme využili zvlnění magnetické vrstvy vlnovodu, které indukuje uniaxiální magnetickou anizotropii, s jejíž pomocí můžeme efektivně ovládat směr magnetizace ve vlnovodu s prostorovým rozlišením v řádu desetin mikrometru. Tímto způsobem můžeme šířit spinové vlny v požadovaných módech v různých směrech bez nutnosti vnějšího pole. K návrhu zatáčky jsme vytvořili model, který analyzuje energetické příspěvky magnetizace a najde tak velikost a směr výsledného efektivního magnetického pole. Pomocí tohoto modelu a důkladné analýzy disperzní relace jsme navrhli zahnutý vlnovod, který je schopný stočit spinové vlny, což jsme prokázali mikroskopií Brillouinova rozptylu světla.
Magnonics is a branch of physics dealing with spin waves, or their quanta – magnons. Spin waves are one of the candidates for beyond CMOS technology. Circuits and components utilizing the properties of spin waves have the potential to complement or replace the current technologies based on CMOS chips, which are nearing their physical limit. Information processing via spin waves requires the ability to effectively steer spin waves in magnonic circuits, especially in variously bent waveguides connecting individual circuit elements. Due to spin waves’ anisotropic behaviour, this remains on of the challenges to tackle. In the presented thesis, we used corrugating of the magnetic layer of the waveguides, which induces uniaxial magnetic anisotropy, with which we can control the magnetisation landscape in the waveguide with sub-micrometre precision. Using this approach, we can achieve zero-field-propagation of spin waves in desired modes in arbitrary directions. To aid our designs, we developed a model that analyses energy contributions and calculates the resulting effective magnetic field. Using this model and a thorough analysis of the dispersion relation, we designed a bent magnonic waveguide capable of steering spin waves, which we demonstrated by Brillouin light scattering microscopy.
Description
Citation
KLÍMA, J. Studium propagace spinových vln v prostředí s netriviální distribucí magnetizace [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2023.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
bez specializace
Comittee
prof. RNDr. Tomáš Šikola, CSc. (předseda) prof. RNDr. Jiří Spousta, Ph.D. (místopředseda) prof. RNDr. Bohumila Lencová, CSc. (člen) prof. RNDr. Radim Chmelík, Ph.D. (člen) prof. RNDr. Petr Dub, CSc. (člen) doc. Ing. Stanislav Průša, Ph.D. (člen) prof. Ing. Miroslav Kolíbal, Ph.D. (člen) doc. Mgr. Vlastimil Křápek, Ph.D. (člen) prof. Ing. Jan Čechal, Ph.D. (člen) doc. Ing. Miroslav Bartošík, Ph.D. (člen) doc. Ing. Radek Kalousek, Ph.D. (člen) RNDr. Antonín Fejfar, CSc. (člen)
Date of acceptance
2023-06-22
Defence
Po otázkách oponenta bylo dále diskutováno: Určení grupové rychlosti vlny. Volba směru čar v zatáčce vlnovodu. Dochází k odrazu na rozhraních? Student na otázky odpověděl.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO