Grasping the behavior of magnetorheological fluids in gradient pinch mode via microscopic imaging

dc.contributor.authorKubík, Michalcs
dc.contributor.authorŽáček, Jiřícs
dc.contributor.authorGoldasz, Januszcs
dc.contributor.authorNečas, Davidcs
dc.contributor.authorSedlačík, Michalcs
dc.contributor.authorBlahuta, Jiřícs
dc.contributor.authorBańkosz, Wojciechcs
dc.contributor.authorSapinski, Bogdancs
dc.coverage.issue4cs
dc.coverage.volume36cs
dc.date.accessioned2024-05-16T14:46:56Z
dc.date.available2024-05-16T14:46:56Z
dc.date.issued2024-04-03cs
dc.description.abstractMagnetorheological (MR) fluids are suspensions of micrometer-sized ferromagnetic particles in a carrier fluid, which react to magnetic fields. The fluids can be operated in several fundamental modes. Contrary to the other modes, the rheology and microstructure formation of the MR fluid in the gradient pinch mode have been studied to a far lesser extent. The magnetic field distribution in the flow channel is intentionally made non-uniform. It is hypothesized that the Venturi-like contraction is achieved via fluid property changes, leading to a unique behavior and the presence of a pseudo-orifice. The main goal is to investigate the presence of the Venturi-like contraction effect in the fluid by means of optical imaging and hydraulic measurements. To accomplish the goal, a unique test rig has been developed including a fluorescence microscope and MR valve prototype. The Venturi-like contraction hypothesis was confirmed. The results indicate that the effective flow channel size decreases by 92% at the maximum magnetic flux applied. This has a direct impact on the flow characteristics of the MR valve. The variation of the pressure–flow rate curve slope with magnetic field was demonstrated. The results provide valuable information for understanding the rheology and microstructure formation mechanism in MR fluids in the pinch mode.en
dc.formattextcs
dc.format.extent042004-1-042004-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationPHYSICS OF FLUIDS. 2024, vol. 36, issue 4, p. 042004-1-042004-10.en
dc.identifier.doi10.1063/5.0203804cs
dc.identifier.issn1070-6631cs
dc.identifier.orcid0000-0003-0105-2921cs
dc.identifier.orcid0000-0002-2883-6702cs
dc.identifier.orcid0000-0002-3843-8732cs
dc.identifier.other188368cs
dc.identifier.researcheridK-3568-2014cs
dc.identifier.researcheridABG-2621-2021cs
dc.identifier.researcheridI-7816-2014cs
dc.identifier.scopus56635672600cs
dc.identifier.urihttps://hdl.handle.net/11012/245539
dc.language.isoencs
dc.publisherAIP Publishingcs
dc.relation.ispartofPHYSICS OF FLUIDScs
dc.relation.urihttps://pubs.aip.org/aip/pof/article/36/4/042004/3280712/Grasping-the-behavior-of-magnetorheological-fluidscs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1070-6631/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmagnetorheological fluiden
dc.titleGrasping the behavior of magnetorheological fluids in gradient pinch mode via microscopic imagingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-188368en
sync.item.dbtypeVAVen
sync.item.insts2024.05.16 16:46:56en
sync.item.modts2024.05.16 16:13:35en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav konstruovánícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
042004_1_5.0203804.pdf
Size:
3.65 MB
Format:
Adobe Portable Document Format
Description:
file 042004_1_5.0203804.pdf