High aspect ratio Parylene C micropillars formed by molding and ION-BEAM etching method

Loading...
Thumbnail Image

Authors

Fohlerová, Zdenka
Fecko, Peter
Gablech, Imrich
Košelová, Zuzana

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

TANGER
Altmetrics

Abstract

This paper represents the molding and plasma etching method for developing a high aspect ratio parylene C pillar array. The silicon mold was fabricated using the modified Bosch process. The parylene was deposited by chemical vapor deposition into the silicone holes, followed by the etching of silicon to obtain the transparent membrane of hollow parylene C pillars. The etching method was initialized by transferring the pattern on the hard titanium mask via standard photolithography, followed by titanium etching. The oxygen plasma ion-milling of parylene C produced the flexible pillars standing on the silicon substrate. Both pillar arrays were characterized by scanning electron microscopy. Arrays of micropillars could be applicable for measuring cellular forces or as the bioinspired platform with modulated surface chemistry.
This paper represents the molding and plasma etching method for developing a high aspect ratio parylene C pillar array. The silicon mold was fabricated using the modified Bosch process. The parylene was deposited by chemical vapor deposition into the silicone holes, followed by the etching of silicon to obtain the transparent membrane of hollow parylene C pillars. The etching method was initialized by transferring the pattern on the hard titanium mask via standard photolithography, followed by titanium etching. The oxygen plasma ion-milling of parylene C produced the flexible pillars standing on the silicon substrate. Both pillar arrays were characterized by scanning electron microscopy. Arrays of micropillars could be applicable for measuring cellular forces or as the bioinspired platform with modulated surface chemistry.

Description

Citation

NANOCON Conference Proceedings - International Conference on Nanomaterials. 2022, p. 1-4.
https://www.confer.cz/nanocon/2021/4349-high-aspect-ratio-parylene-c-micropillars-for-cellular-force-measurement

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO