Haar wavelet kolokační metoda vyššího řádu pro systémy integro-diferenciálních rovnic

but.committeedoc. Ing. Luděk Nechvátal, Ph.D. (předseda) prof. RNDr. Josef Šlapal, CSc. (místopředseda) doc. Ing. Petr Tomášek, Ph.D. (člen) doc. Ing. Jiří Šremr, Ph.D. (člen) prof. RNDr. Miloslav Druckmüller, CSc. (člen) Prof. Bruno Rubino, Ph.D. (člen) Prof. Corrado Lattanzio, Ph.D. (člen) Gennaro Ciampa, Ph.D. (člen)cs
but.defenceThe student presented their master’s thesis. Following the presentation, the supervisor summarized their evaluation report. Subsequently, the secretary read the opponent’s report aloud. The student responded adequately to the sole question raised by the opponent and also addressed a question from the Italian member of the committee.cs
but.jazykangličtina (English)
but.programApplied and Interdisciplinary Mathematicscs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorTomášek, Petren
dc.contributor.authorKhan, Amir Alien
dc.contributor.refereeRozehnalová, Petraen
dc.date.created2025cs
dc.description.abstractIn this thesis, the Haar Wavelet Collocation Method (HWCM) and its higher-order extension (HHWCM) are used to solve a coupled system of second-order integro-differential equations (IDEs) numerically in an efficient manner. The piecewise constant nature and orthogonality of the Haar wavelet basis functions provide a sparse system and computational simplicity. To improve accuracy and smoothness, two techniques are developed: one based on the standard HWCM, which approximates the second-order derivatives, and the other on the HHWCM, which approximates the fourth-order derivatives. Collocation points are used to convert the system of IDEs into a collection of algebraic equations, and integration constants are then calculated by applying the initial conditions. To confirm the precision and dependability of the suggested techniques, a benchmark example with known exact solutions is examined. The numerical findings reveal that HHWCM produces better precision than the traditional HWCM, particularly for smooth solutions, and they also show great agreement with the exact solutions. In applied mathematics and engineering, the suggested methodology shows promise for solving intricate systems of integro-differential equations.en
dc.description.abstractIn this thesis, the Haar Wavelet Collocation Method (HWCM) and its higher-order extension (HHWCM) are used to solve a coupled system of second-order integro-differential equations (IDEs) numerically in an efficient manner. The piecewise constant nature and orthogonality of the Haar wavelet basis functions provide a sparse system and computational simplicity. To improve accuracy and smoothness, two techniques are developed: one based on the standard HWCM, which approximates the second-order derivatives, and the other on the HHWCM, which approximates the fourth-order derivatives. Collocation points are used to convert the system of IDEs into a collection of algebraic equations, and integration constants are then calculated by applying the initial conditions. To confirm the precision and dependability of the suggested techniques, a benchmark example with known exact solutions is examined. The numerical findings reveal that HHWCM produces better precision than the traditional HWCM, particularly for smooth solutions, and they also show great agreement with the exact solutions. In applied mathematics and engineering, the suggested methodology shows promise for solving intricate systems of integro-differential equations.cs
dc.description.markCcs
dc.identifier.citationKHAN, A. Haar wavelet kolokační metoda vyššího řádu pro systémy integro-diferenciálních rovnic [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2025.cs
dc.identifier.other165633cs
dc.identifier.urihttp://hdl.handle.net/11012/253538
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectSystem of Integro-Differential Equationsen
dc.subjectHigher-Order Haar Waveleten
dc.subjectNumerical Methodsen
dc.subjectFractional Calculusen
dc.subjectNonlinear Systems.en
dc.subjectSystem of Integro-Differential Equationscs
dc.subjectHigher-Order Haar Waveletcs
dc.subjectNumerical Methodscs
dc.subjectFractional Calculuscs
dc.subjectNonlinear Systems.cs
dc.titleHaar wavelet kolokační metoda vyššího řádu pro systémy integro-diferenciálních rovnicen
dc.title.alternativeHigher order Haar wavelet collocation method for systems of integral-differential equationscs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2025-06-17cs
dcterms.modified2025-06-20-12:24:33cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid165633en
sync.item.dbtypeZPen
sync.item.insts2025.08.27 02:57:53en
sync.item.modts2025.08.26 19:49:50en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.levelInženýrskýcs
thesis.nameIng.cs

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
865.74 KB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.zip
Size:
9.99 KB
Format:
Unknown data format
Description:
file appendix-1.zip
Loading...
Thumbnail Image
Name:
review_165633.html
Size:
9.63 KB
Format:
Hypertext Markup Language
Description:
file review_165633.html

Collections