Allotrope-dependent activity-stability relationships of molybdenum sulfide hydrogen evolution electrocatalysts

dc.contributor.authorEscalera-López, Danielcs
dc.contributor.authorIffelsberger, Christiancs
dc.contributor.authorZlatar, Matejcs
dc.contributor.authorNovčić, Katarinacs
dc.contributor.authorMaselj, Nikcs
dc.contributor.authorVan Pham, Chuyencs
dc.contributor.authorJovanovič, Primožcs
dc.contributor.authorHodnik, Nejccs
dc.contributor.authorThiele, Simoncs
dc.contributor.authorPumera, Martincs
dc.contributor.authorCherevko, Serhiycs
dc.coverage.issue1cs
dc.coverage.volume15cs
dc.date.accessioned2025-06-17T09:57:55Z
dc.date.available2025-06-17T09:57:55Z
dc.date.issued2024-04-29cs
dc.description.abstractMolybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed. The stability of non-noble catalysts is key for their use in proton exchange membrane water electrolysers. Here, authors study activity-stability relationships of MoSx allotropes for H2 production, reporting allotrope-dependent stabilities and dissolution pathways, and propose operation guidelines.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNATURE COMMUNICATIONS. 2024, vol. 15, issue 1, p. 1-13.en
dc.identifier.doi10.1038/s41467-024-47524-wcs
dc.identifier.issn2041-1723cs
dc.identifier.orcid0000-0003-4217-0043cs
dc.identifier.orcid0000-0002-5572-1847cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other189968cs
dc.identifier.researcheridE-8664-2019cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttps://hdl.handle.net/11012/252863
dc.language.isoencs
dc.publisherNATURE PORTFOLIOcs
dc.relation.ispartofNATURE COMMUNICATIONScs
dc.relation.urihttps://www.nature.com/articles/s41467-024-47524-wcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2041-1723/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCATALYTIC-ACTIVITYen
dc.subjectEVOLVING CATALYSTen
dc.subjectPHASE-TRANSITIONen
dc.subjectSULFUR VACANCIESen
dc.subjectNATURAL CRYSTALSen
dc.subjectEDGE SITESen
dc.subjectMOS2en
dc.subjectIDENTIFICATIONen
dc.subjectMONOLAYERen
dc.subjectSPECTROSCOPYen
dc.titleAllotrope-dependent activity-stability relationships of molybdenum sulfide hydrogen evolution electrocatalystsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189968en
sync.item.dbtypeVAVen
sync.item.insts2025.06.17 11:57:55en
sync.item.modts2025.06.17 11:33:28en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s4146702447524w.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format
Description:
file s4146702447524w.pdf