Propagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperatures

dc.contributor.authorKnauer, Sebastiancs
dc.contributor.authorDavídková, Kristýnacs
dc.contributor.authorSchmoll, Davidcs
dc.contributor.authorSerha, Rostyslav O.cs
dc.contributor.authorVoronov, Andreycs
dc.contributor.authorWang, Qics
dc.contributor.authorVerba, Romancs
dc.contributor.authorDobrovolskiy, Oleksandr V.cs
dc.contributor.authorLindner, Morriscs
dc.contributor.authorReimann, Timmycs
dc.contributor.authorDubs, Carstencs
dc.contributor.authorUrbánek, Michalcs
dc.contributor.authorChumak, Andrii V.cs
dc.coverage.issue14cs
dc.coverage.volume133cs
dc.date.issued2023-04-14cs
dc.description.abstractPerforming propagating spin-wave spectroscopy of thin films at millikelvin temperatures is the next step toward the realization of large-scale integrated magnonic circuits for quantum applications. Here, we demonstrate spin-wave propagation in a 100 nm-thick yttrium-iron-garnet (YIG) film at temperatures down to 45 mK, using stripline nanoantennas deposited on YIG surface for electrical excitation and detection. The clear transmission characteristics over the distance of 10 mu m are measured and the extracted spin-wave group velocity and the YIG saturation magnetization agree well with the theoretical values. We show that the gadolinium-gallium-garnet (GGG) substrate influences the spin-wave propagation characteristics only for the applied magnetic fields beyond 75 mT, originating from a GGG magnetization up to 62 kA/m at 45 mK. Our results show that the developed fabrication and measurement methodologies enable the realization of integrated magnonic quantum nanotechnologies at millikelvin temperatures. (c) 2023 Author(s).en
dc.formattextcs
dc.format.extent1-8cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Applied Physics. 2023, vol. 133, issue 14, p. 1-8.en
dc.identifier.doi10.1063/5.0137437cs
dc.identifier.issn1089-7550cs
dc.identifier.orcid0000-0003-0072-2073cs
dc.identifier.other184064cs
dc.identifier.researcheridM-7120-2019cs
dc.identifier.urihttp://hdl.handle.net/11012/213663
dc.language.isoencs
dc.publisherAIP Publishingcs
dc.relation.ispartofJournal of Applied Physicscs
dc.relation.urihttps://pubs.aip.org/aip/jap/article/133/14/143905/2877878/Propagating-spin-wave-spectroscopy-in-a-liquidcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1089-7550/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMAGNONen
dc.subjectFMRen
dc.titlePropagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperaturesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-184064en
sync.item.dbtypeVAVen
sync.item.insts2024.06.12 05:46:31en
sync.item.modts2024.06.12 05:23:29en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
143905_1_5.0137437.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
143905_1_5.0137437.pdf