Propagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperatures
dc.contributor.author | Knauer, Sebastian | cs |
dc.contributor.author | Davídková, Kristýna | cs |
dc.contributor.author | Schmoll, David | cs |
dc.contributor.author | Serha, Rostyslav O. | cs |
dc.contributor.author | Voronov, Andrey | cs |
dc.contributor.author | Wang, Qi | cs |
dc.contributor.author | Verba, Roman | cs |
dc.contributor.author | Dobrovolskiy, Oleksandr V. | cs |
dc.contributor.author | Lindner, Morris | cs |
dc.contributor.author | Reimann, Timmy | cs |
dc.contributor.author | Dubs, Carsten | cs |
dc.contributor.author | Urbánek, Michal | cs |
dc.contributor.author | Chumak, Andrii V. | cs |
dc.coverage.issue | 14 | cs |
dc.coverage.volume | 133 | cs |
dc.date.issued | 2023-04-14 | cs |
dc.description.abstract | Performing propagating spin-wave spectroscopy of thin films at millikelvin temperatures is the next step toward the realization of large-scale integrated magnonic circuits for quantum applications. Here, we demonstrate spin-wave propagation in a 100 nm-thick yttrium-iron-garnet (YIG) film at temperatures down to 45 mK, using stripline nanoantennas deposited on YIG surface for electrical excitation and detection. The clear transmission characteristics over the distance of 10 mu m are measured and the extracted spin-wave group velocity and the YIG saturation magnetization agree well with the theoretical values. We show that the gadolinium-gallium-garnet (GGG) substrate influences the spin-wave propagation characteristics only for the applied magnetic fields beyond 75 mT, originating from a GGG magnetization up to 62 kA/m at 45 mK. Our results show that the developed fabrication and measurement methodologies enable the realization of integrated magnonic quantum nanotechnologies at millikelvin temperatures. (c) 2023 Author(s). | en |
dc.format | text | cs |
dc.format.extent | 1-8 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Journal of Applied Physics. 2023, vol. 133, issue 14, p. 1-8. | en |
dc.identifier.doi | 10.1063/5.0137437 | cs |
dc.identifier.issn | 1089-7550 | cs |
dc.identifier.orcid | 0000-0003-0072-2073 | cs |
dc.identifier.other | 184064 | cs |
dc.identifier.researcherid | M-7120-2019 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/213663 | |
dc.language.iso | en | cs |
dc.publisher | AIP Publishing | cs |
dc.relation.ispartof | Journal of Applied Physics | cs |
dc.relation.uri | https://pubs.aip.org/aip/jap/article/133/14/143905/2877878/Propagating-spin-wave-spectroscopy-in-a-liquid | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1089-7550/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | MAGNON | en |
dc.subject | FMR | en |
dc.title | Propagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperatures | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-184064 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:48:22 | en |
sync.item.modts | 2025.01.17 16:55:15 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1 | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 143905_1_5.0137437.pdf
- Size:
- 2.08 MB
- Format:
- Adobe Portable Document Format
- Description:
- 143905_1_5.0137437.pdf