An Efficient Super-Resolution DOA Estimator Based on Grid Learning

Loading...
Thumbnail Image
Date
2019-12
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
Direction-of-arrival (DOA) estimation based on sparse signal reconstruction (SSR) is always vulnerable to off-grid error. To address this issue, an efficient super-resolution DOA estimation algorithm is proposed in this work. Utilizing the Taylor series expansion, the sparse dictionary matrix is constructed under the off-grid model. Then, a polynomial optimization function is established based on the orthogonality principle. By minimizing the given objective function, we derive an efficient closed-form solution of the off-grid errors. Using the estimated off-grid errors, the discretized grid can be iteratively learned and approaches the true DOAs. With the newly learned grid, accurate DOA estimations can be achieved through the SSR scheme. The proposed algorithm converges fast and achieves precise DOA estimations even the step size of the discretized grid is large. The superior performance of the proposed algorithm is demonstrated by the simulation results.
Description
Citation
Radioengineering. 2019 vol. 28, č. 4, s. 785-792. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2019/19_04_0785_0792.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO