Exploring Electron Transport and Memristive Switching in Nanoscale Au/WOx/W Multijunctions Based on Anodically Oxidized Al/W Metal Layers

Loading...
Thumbnail Image

Authors

Bendová, Mária
Hubálek, Jaromír
Mozalev, Alexander

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

WILEY-VCH Verlag GmbH & Co
Altmetrics

Abstract

An array of semiconducting tungsten-oxide (WOx) nanorods, 100 nm wide and 700 nm long, is synthesized via the porous-anodic-alumina-assisted anodization of tungsten on a substrate and is modified by annealing in air and vacuum. The rods buried in the alumina nanopores are self-anchored to the tungsten layer while their tops are interconnected via gold electrodeposited inside and over the pores. Thus formed metal/semiconductor/metal microdevices are used for studying electron transport within the nanorods and across the multiplied nanoscale Au/WOx and W/WOx interfaces. The dominating effect of a Schottky junction that forms at the Au/WOx interface is justified for the as-anodized and air-annealed nanorods tested at room temperature, which transforms into an ohmic contact at elevated temperature, whereas the bottom W/WOx interface turns out to be Schottky-like and govern the electron transport, giving a higher barrier and a set of pronounced diode-like characteristics in the as-anodized nanoarrays. The amorphous nanorods reveal bipolar resistive switching with a gradual reset due to the field-driven movement of oxygen vacancies and induced modifications of the Au/WOx Schottky interface. The unique electrical and interfacial properties of the nanoscale Au/WOx/W multijunctions form a basis for their application in emerging resistive random access memories or 3D gas-sensing nanodevices.
An array of semiconducting tungsten-oxide (WOx) nanorods, 100 nm wide and 700 nm long, is synthesized via the porous-anodic-alumina-assisted anodization of tungsten on a substrate and is modified by annealing in air and vacuum. The rods buried in the alumina nanopores are self-anchored to the tungsten layer while their tops are interconnected via gold electrodeposited inside and over the pores. Thus formed metal/semiconductor/metal microdevices are used for studying electron transport within the nanorods and across the multiplied nanoscale Au/WOx and W/WOx interfaces. The dominating effect of a Schottky junction that forms at the Au/WOx interface is justified for the as-anodized and air-annealed nanorods tested at room temperature, which transforms into an ohmic contact at elevated temperature, whereas the bottom W/WOx interface turns out to be Schottky-like and govern the electron transport, giving a higher barrier and a set of pronounced diode-like characteristics in the as-anodized nanoarrays. The amorphous nanorods reveal bipolar resistive switching with a gradual reset due to the field-driven movement of oxygen vacancies and induced modifications of the Au/WOx Schottky interface. The unique electrical and interfacial properties of the nanoscale Au/WOx/W multijunctions form a basis for their application in emerging resistive random access memories or 3D gas-sensing nanodevices.

Description

Citation

Advanced Materials Interfaces. 2016, vol. 3, issue 19, p. 1600512-1600524.
http://onlinelibrary.wiley.com/doi/10.1002/admi.201600512/abstract

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 4.0 International
Citace PRO