Exploring Electron Transport and Memristive Switching in Nanoscale Au/WOx/W Multijunctions Based on Anodically Oxidized Al/W Metal Layers
Loading...
Date
2016-10-06
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
WILEY-VCH Verlag GmbH & Co
Altmetrics
Abstract
An array of semiconducting tungsten-oxide (WOx) nanorods, 100 nm wide and 700 nm long, is synthesized via the porous-anodic-alumina-assisted anodization of tungsten on a substrate and is modified by annealing in air and vacuum. The rods buried in the alumina nanopores are self-anchored to the tungsten layer while their tops are interconnected via gold electrodeposited inside and over the pores. Thus formed metal/semiconductor/metal microdevices are used for studying electron transport within the nanorods and across the multiplied nanoscale Au/WOx and W/WOx interfaces. The dominating effect of a Schottky junction that forms at the Au/WOx interface is justified for the as-anodized and air-annealed nanorods tested at room temperature, which transforms into an ohmic contact at elevated temperature, whereas the bottom W/WOx interface turns out to be Schottky-like and govern the electron transport, giving a higher barrier and a set of pronounced diode-like characteristics in the as-anodized nanoarrays. The amorphous nanorods reveal bipolar resistive switching with a gradual reset due to the field-driven movement of oxygen vacancies and induced modifications of the Au/WOx Schottky interface. The unique electrical and interfacial properties of the nanoscale Au/WOx/W multijunctions form a basis for their application in emerging resistive random access memories or 3D gas-sensing nanodevices.
Pole polovodivých nanotyčinek oxidů wolframu (WOx), 100 nm širokých a 700 nm dlouhých, je syntetizováno z wolframu pomocí porézní aluminy a je modifikováno žíháním ve vzduchu a ve vakuu. Tyčinky skryté v nanopórech aluminy jsou ukotveny k vrstvě wolframu, zatímco jejich vršky jsou propojeny elektrodeponovaným zlatem vevnitř a na povrchu pórů. Takto vytvořené mikrozařízení kov/polovodič/kov jsou použity ke studiu elektronového transportu vevnitř nanotyčinek a přez vícenásobné Au/WOx a W/WOx rozhraní. Je pozorován dominantní vliv Schottkyho kontaktu vytvořeného na Au/WOx rozhraní u nežíhaných a ve vzduchu žíhaných nanotyčinek testovaných při pokojové teplotě, jež se změní v ohmický kontakt za zvýšené teploty, přičemž spodní W/WOx rozhraní se změní v Schottkyho kontakt dominující elektronovému transportu, vedoucí k vyšší bariéře a sadě diodových charakteristik u nežíhaných polí. Amorfní nanotyčky vykazují bipolární resistivní spínání s postupným resetem, díky polem-řízenému pohybu kyslíkových vakancií a indukovanými změnami Au/WOx Schottkyho rozhraní. Tyto unikátní elektrické a rozhraňové vlastnosti nanorozměrných Au/WOx/W rozhraních tvoří základ pro jejich použití v rozvíjejících se ReRAM pamětích nebo v nanosenzorech plynů.
Pole polovodivých nanotyčinek oxidů wolframu (WOx), 100 nm širokých a 700 nm dlouhých, je syntetizováno z wolframu pomocí porézní aluminy a je modifikováno žíháním ve vzduchu a ve vakuu. Tyčinky skryté v nanopórech aluminy jsou ukotveny k vrstvě wolframu, zatímco jejich vršky jsou propojeny elektrodeponovaným zlatem vevnitř a na povrchu pórů. Takto vytvořené mikrozařízení kov/polovodič/kov jsou použity ke studiu elektronového transportu vevnitř nanotyčinek a přez vícenásobné Au/WOx a W/WOx rozhraní. Je pozorován dominantní vliv Schottkyho kontaktu vytvořeného na Au/WOx rozhraní u nežíhaných a ve vzduchu žíhaných nanotyčinek testovaných při pokojové teplotě, jež se změní v ohmický kontakt za zvýšené teploty, přičemž spodní W/WOx rozhraní se změní v Schottkyho kontakt dominující elektronovému transportu, vedoucí k vyšší bariéře a sadě diodových charakteristik u nežíhaných polí. Amorfní nanotyčky vykazují bipolární resistivní spínání s postupným resetem, díky polem-řízenému pohybu kyslíkových vakancií a indukovanými změnami Au/WOx Schottkyho rozhraní. Tyto unikátní elektrické a rozhraňové vlastnosti nanorozměrných Au/WOx/W rozhraních tvoří základ pro jejich použití v rozvíjejících se ReRAM pamětích nebo v nanosenzorech plynů.
Description
Citation
Advanced Materials Interfaces. 2016, vol. 3, issue 19, p. 1600512-1600524.
http://onlinelibrary.wiley.com/doi/10.1002/admi.201600512/abstract
http://onlinelibrary.wiley.com/doi/10.1002/admi.201600512/abstract
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/